Typical self-affine sets with non-empty interior

Zhou Feng

The Chinese University of Hong Kong

Fractal Geometry, Edinburgh, 3-7 July, 2023

Joint work with De-Jun Feng

Self-affine set

- Let T_1, \ldots, T_m be $d \times d$ invertible real matrices with $||T_j|| < 1/2$ for $1 \le j \le m$. Write $\mathbf{T} := (T_1, \ldots, T_m)$.
- For $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{R}^{dm}$, we consider the affine iterated function system,

$$\{f_j^{\mathbf{a}}(x) = T_j x + a_j\}_{j=1}^m.$$

 It is well known that there is a unique non-empty compact set K^a, called self-affine set, such that

$$K^{\mathbf{a}} = \bigcup_{j=1}^{m} f_{j}^{\mathbf{a}}(K^{\mathbf{a}}).$$

 In this talk, we fix the linear part T and study K^a with the translations a changing.

Research target

For example, some self-affine set K^a looks like

Goal

To provide some sufficient conditions on \mathbf{T} such that $K^{\mathbf{a}}$ has non-empty interior for \mathcal{L}^{dm} -a.e. (typical) \mathbf{a} .

Motivation

In 1988, Falconer introduced a quantity dim $_{\rm AFF}$ T called affinity dimension which only depends on the linear part T.

Classical results

• (Falconer, 1988; Solomyak, 1998) For \mathcal{L}^{dm} -a.e. **a**,

$$\mathsf{dim}_{\mathrm{H}}\, \mathcal{K}^{\boldsymbol{a}} = \mathsf{dim}_{\mathrm{B}}\, \mathcal{K}^{\boldsymbol{a}} = \mathsf{min}\, \{\mathit{d}, \mathsf{dim}_{\mathrm{AFF}}\, \boldsymbol{\mathsf{T}}\}\,.$$

 (Jordan, Pollicott, and Simon, 2007) If dim_{AFF} T > d, then \(\mathcal{L}^d(K^a) > 0 \) for \(\mathcal{L}^{dm}\)-a.e. a.

Question

How about the interior of typical K^a ?

Although this seems a rather fundamental question, it has hardly been studied.

Main results: general case

To state the result, we define

$$\gamma(\mathbf{T}) = \inf \left\{ \gamma \geq 0 \colon \sup_{n \geq 1} \sum_{|I| = n} \alpha_d(T_I)^{\gamma} |\det T_I| \leq 1 \right\}.$$

where $\alpha_d(T)$ denotes the smallest singular value of a matrix T and $T_I = T_{i_1} \cdots T_{i_n}$ for $I = i_1 \dots i_n \in \{1, \dots, m\}^n$.

In short, $\gamma(T)$ is a quantity only depending on T.

Theorem A

If $\gamma(T) > d$, then K^a has non-empty interior for \mathcal{L}^{dm} -a.e. **a**.

The idea for proving Theorem A

• By a classical result (see e.g. (Mattila, 2015)), it suffices to find measures $\mu^{\bf a}$ supported on $K^{\bf a}$ such that the Fourier transform $\widehat{\mu^{\bf a}}$ satisfies

$$\int_{B_\rho} \int_{\mathbb{R}^d} |\widehat{\mu^{\mathbf{a}}}(\xi)|^2 |\xi|^{\gamma} \, d\xi d\mathbf{a} < \infty \quad \text{for some } \gamma > d.$$

- By the transversality arguments of Falconer and Solomyak, and some key inequalities, the problem is reduced to finding some measure on $\{1,\ldots,m\}^{\mathbb{N}}$ with enough regularity.
- The condition $\gamma(T) > d$ is discovered and provides such a regular measure.

Main results: commutative case

Theorem B

Suppose $T_iT_j=T_jT_i$ for $1 \leq i,j \leq m$. If $\sum_{j=1}^m |\det T_j|^2 > 1$, then $K^{\bf a}$ has non-empty interior for \mathcal{L}^{dm} -a.e. ${\bf a}$.

For simplicity, we show the idea of the proof for the homogeneous case where

$$T = (T, \ldots, T).$$

By symbolic expression,

$$K^{\mathbf{a}} = \mathbf{E}^{\mathbf{a}} + T\mathbf{E}^{\mathbf{a}},$$

where $E^{\mathbf{a}}$ is the self-affine set generated by $\{T^2x + a_j\}_{j=1}^m$.

- Then $m \cdot |\det T|^2 > 1$ implies typically $\mathcal{L}^d(E^a) > 0$ (Jordan, Pollicott, and Simon, 2007).
- The proof is finished by Steinhaus theorem.

An open question

By definition,

(1)
$$\gamma(\mathbf{T}) > d \iff \exists n \text{ such that } \sum_{|I|=n} \alpha_d(T_I)^d |\det T_I| > 1$$

(2)
$$\dim_{AFF} \mathbf{T} > 2d \iff \sum_{j=1}^{m} |\det T_j|^2 > 1$$

(3)
$$\dim_{\mathrm{AFF}} \mathbf{T} > d \iff \sum_{j=1}^{m} |\det T_j| > 1.$$

Recall that (1) and (2) are respectively assumed in Theorems A and B. And (3) implies typically $\mathcal{L}^d(K^a) > 0$.

Note
$$(1) \implies (2) \implies (3)$$
.

Open question

Does typical K^a have non-empty interior under the condition (3)?

Some numerical experiments

Thank you for listening!

Cheers for fractal!