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@ Background on the dimension of self-similar measures
® Projection entropy and lower bound estimate
© Lower bound on the dimension of Bernoulli convolutions

O Upper bound on the dimension of Bernoulli convolutions
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Self-similar sets

Consider an IFS {S;}¢_, of contracting maps on R9. The attractor
K of this IFS, is the unique nonempty compact set satisfying

We call K a self-similar set if S; are similarities, that is
Si(x):p,-O,-era,-, i=1,...,0,

where O; are orthogonal matrices, 0 < p; < 1, and a; € RY.
We call K a self-affine set if S; are affine maps.

In the following, we assume that S; are similarities.
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Self-similar measures

Given a probability weight p = (p1, ..., p¢) with p; > 0 for
i=1,...,£ there is a unique Borel probability measure
supported on K such that

¢
= Zp; poSt
i=1

which is called the self-similar measure associated with {S;}¢_;
and p.

Main question

How to determine the Hausdorff dimension of self-similar measures
dimpy u?
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Progress

(Hutchinson, 1981) Suppose that {S;}¢_; satisfies the open set
condition (OSC). Then

- pi log pi
dimpy g1 = dimg 1 i 2 Pi1o8 P
>_; pilog p;

Consider a self-similar IFS {S;}¢_, on R, that is
Si(x):p,-x—i—a,-, i=1,...,4,

where 0 < p; < 1 and a; € R.

® (Hochman, 2014) Suppose {S;} satisfies the exponential
separation condition (3¢ > 0 such that |S; i, — S;,..j,| > ¢”
for iy ...in # ji-..jn). Then

dimy = min{1,dimg p}.

This holds if all p;, a; are algebraic numbers and no
exact-overlap (Si..i, # Sj..j, for iv...in # j1 .. jn).
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® (Hochman, 2017) Higher dimensional extensions.

® (Rapaport, 2020) Suppose all p; are algebraic numbers (no
assumptions on a;) and no exact-overlap. Then

dimy p = min{1,dimg p}. (1)

e (Varju, 2019; Rapaport and Varjd, 2020) Equation (1) holds if
pi = pjfor 1 <i < j </ and all a; are rational numbers and
no exact-overlap.

The main question has not yet been completely solved, especially
without separation conditions.

Main goal

To provide some algorithms for numerically estimating the
dimension of overlapping self-similar measures.
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Let {S;}¢_; be an IFS on R?. Let (¥, 0) be the one-sided full shift
over the alphabet {1,...,¢}. Let m: ¥ = {1,... .} — RY be the
coding map defined by

m(x) = lim Sqo0-05,(0).  x= ().

Given a probability vector (p1,...,pe), let m=[[,",(p1.....pr)
be the product measure on ¥. The push-forward ;1 = mon ! is
the stationary measure satisfying

L
W= Zp,- T Sfl.
i=1
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Projection entropy and dimension formula

Let P={[i]: i=1,...,¢} be the partition of ¥ consisting of the
1st order cylinders.

The projection entropy of m under 7 is defined by
he(m) := Hm(P) — Hm(P|7 1 B(RY)).

where H,(P) = — >, pilog pj and Hp(-|-) stands for the
conditional entropy (see e.g., Parry (1981); Walters (1982)).

Theorem (Feng and Hu (2009))

Suppose that {S;} is a self-similar IFS and ju = mon~L. Then p is

log u(B(x,r)) _
log r

exact-dimensional (lim,_o const for p-a.e. x) and

hﬁ(’")
> pilog(1/pi)

dimH,u =
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Upper bounds on H,(P|7 1B(R9))

e Let D be any finite Borel partition of R? (or K). Then

Hm(Pln B(RY)) < Hm(P|x~1D).

Hm(/P‘WilB(Rd)) - |imdiam(D)~>0 Hm(,P‘Wilp)'
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Upper bounds on H,(P|7 1B(R9))

For a finite Borel partition D of RY or K, suppose that

pi(D) == pip(S; *D) < yi(D), i=1,...,¢, DED.
Then

Hun(Pln 2 (B(RY))) < Hm(Plz D)
= Z f(pa(D), ..., ue(D))

DeD

<Y f(u(D),-...y(D))

DeD

where f(x1,...,x¢) = (x1 + -+ + x¢) Zle 1) (ﬁ) and
¢(x) = —xlog x.
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An algorithm for measure estimation

Problem

How to estimate p(A) from above with small error for a given
Borel set A C R9?

By using self-similarity repeatedly,

u(A) = Z pi

= Z Piy - Pi b o Sil_lA)
’19 :’n
= Z pl‘l---in:u(sll 1/nA)
...dpn
(ST AYNK#£D

i1.-.in

During this process, some of the expanded sets fully cover supp
and some others are disjoint from supp p.
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A diagram to illustrate the algorithm

2 +0

. v + R

Figure: Abstract diagram of the algorithm?!

We call the preset number L of iterations the iteration time.

This algorithm is rigorously stated in the paper.
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Applications to Bernoulli convolutions

For 5 € (1,2), the self-similar measure ji3 associated to the IFS
{S1(x) = x/B, Sa(x) = x/B + 1}

and the weight (1/2,1/2) is called the Bernoulli convolution
associated with S.

® dimy pg < 1if B is a Pisot number (Garsia, 1963).

® dimy pg = 1if § is algebraic but not a root of (0, £1)
polynomials (Hochman, 2014).

® dimy p1g = 1 for some roots of (0,%1) polynomials (Breuillard
and Varjd, 2020; Akiyama, Feng, Kempton, and Persson,
2020).

® dimy pug = 1if 5 is transcendental (Varji, 2019).

Open question
Are Pisot numbers the only ones so that dimy g < 1?7
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Results about uniform lower bounds of dimp 15

Theorem (Hare and Sidorov (2018))
dimy pug > 0.82 for all § € (1,2).

Theorem (Kleptsyn, Pollicott, and Vytnova (2022))

dimy pg > 0.96399 for all 5 € (1,2).

(Through a different approach by estimating the L>-dimension of
Bernoulli convolutions)
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An improved uniform lower bound of dimp 13

Let A3 ~ 1.839286755214... be the tribonacci number (i.e. the
largest root of x> — x> — x — 1 = 0). It is known that

dimy s, ~ 0.98040931953 + 10~
(see, Grabner-Kirschenhofer-Tichy (2002), Feng (2005)).

For all g € (1,2),

dimy pg > 0.98040856.

Moreover, the infimum infge(1 2y dimpy pg is attained at a
parameter B, in a small interval

(B3 —1078,35 + 1079).

dimpy ug > dimy a5 for all g € (1,2) \ {,33}
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Strategy: reduce the parameter interval

® dimy pg > dimy puge for each 8> 1and k € N, [v2,2]

® dimy pg > 0.98041 > dimy ug, for 8 € [V2,1.424041]

since 32 > 2 and dimy pg > dimy pp2 = log2/(2log 3).
[1.42404, 2]
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Strategy: focus on the small parameter intervals

® Take 3 € [V/2,2) and a small § > 0, let
d 3 :
(14 3) ifp<15
e:=¢(B,6) = §( %“) =

® Choose an integer NV, let Dy g be the partition of [0, 1]
generated by the endpoints of S, 5([0,1]), / € {1,2}".
® Set

= 5 (puaside - cbt D) Jus(S - e b d)).

[a,b]€Dn, g

where f(x1,x2) = (x1 + x2)(® X1+X2) + ¢(x1+><2)) and

¢(x) = —xlog x.
® Then for any ' € [B, 8 + 0] with 5’ < 2,
log2 — ty
di P>
IS = Jog(B 1 5)”

Note pg(S; 5,[3, b)) < ,ug(SiTl[a —¢e,b+¢€)]).
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Partition of parameters and implementation settings

BetaStart BetaEnd N | lteration times | BetaStep §
1.42404 1.43998 5 28 2E-05
1.44 1.45998 5 28 2E-05
1.46 1.49998 5 28 2E-05
1.5 1.68999 5 30 1E-05
1.69 1.77999 6 30 1E-05
1.78 1.799999 7 40 1E-06
1.8 1.839199 7 40 1E-06
1.8392 1.8392599 7 40 1E-07
1.83926 1.83927399 7 40 1E-08
1.839274 1.8392863 10 40 1E-08
1.83928631 1.839286579 10 40 1E-09
1.83928658 1.8392869339 | 13 40 1E-10
1.839286934  1.839287249 10 40 1E-09
1.83928725 1.83929899 10 40 1E-08
1.839299 1.83930999 7 40 1E-08
1.83931 1.8399999 7 40 1E-07
1.84 1.849999 5 30 1E-06
1.85 1.99999 5 30 1E-05

Table: Partition of [1.42404, 2] and the corresponding N, ¢ and iteration
times. 18/25



Numerical results
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Figure: Lower bounds of dimy s 2

>The data is hosted at the GitHub repository zfengg/DimEstimate.
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https://github.com/zfengg/DimEstimate

A self-affine example: setup

Consider a self-affine IFS {S1, S} on R?,

Sl(va):(X/av y/[)))* SZ(va):(X/Oé—J'_]'_l/aa }//[))“F]-_]-/B)
where 1 < a < 3 < 2, and choose a probability weight (1/2,1/2).

® |et i be the associated self-affine measures and
m = [[721{1/2,1/2}.

® Let 7 denote the coding map of IFS {51, S} and 71 denote
the coding map of IFS {x/a,x/a+1—1/a}.

® Let P = {[1],]2]} be the partition of {1,2}" according to the
first symbol.
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A self-affine example: theoretical formula

Then by (Feng and Hu, 2009, Theorem 2.11) or (Feng, 2020),

dimy = 1982~ Hn(Plmy "B(R)) | Hn(Pln 'B(R)) — Him (Pl B(R?))

log o log 8
(1 1 . log2 — Hp (Pl ' B(R?))
= (IOga - Iog,B) (Iog2 — Hu(P|7; B(R)) + og 7 .

For each given pair (a, 3), we can apply our algorithm to
numerically estimate the conditional entropies H,,(P|m, *B(R))
and Hy, (P|r1B(R?)) from above, which will lead to a lower
bound on dimy .

21/25



Upper bound on
Hm(P|7; ' B(R))

Upper bound on
Hom (Pl B(R?))

A self-affine example: numerical results

Lower bound on
dimH 1%

0.594519457635335
0.443677110679849
0.358042443198116
0.287856436058623
0.287856436058623
0.165391636766638
0.064653016798699

0.381337271355742
0.011983272405036
0.000020606397791
0.010339956295331
0.000000000000000
0.105399412288277
0.035399973460099

1.17453512577913
1.76440615371483
1.60503743978513
1.59002600229069
1.54205227015933
1.10640907763501
1.03287878328719

(1.8,1.9)

Table: Lower bounds on the dimension of self-affine measures .
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Upper bounds on dimy 15 with Pisot number 3

Here we give a theoretical way to estimate the upper bound of
dimy pg for any Pisot number 3.
Using (Feng, 2003), we built a finite tuple of non-negative
matrices A = (Ay, ..., Ax) such that

P'(1) _ hy (o)
log(1/8)  log B’
where P(q) = lim,_, L log > iij=n [lA]|7, and 7 is the
equilibrium measure corresponding to the pressure P(q) at
q = 1. Moreover, n([i1 - - is]) can be determined from
A - A
Hence for any n > 1,
Hy(PIVi_ 0~ 'P)

log 3

~ 2iex,n ) = X sex, 2(n(J]))
N log

dimy pg =

in*

dimy pg <

where ¢(x) = —x log(x).
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Numerical results on dimension estimates

ssssssssssss

Figure: The graph for x3 — x? — 1 (346 x 346 matrices Ay, ..., As)

Polynomial numerical value of 3 dimy pg
x3—x2 -1 1.465571232 0.9995447 +10~7
x3—x—-1 1.324717957 0.99999503+108
x3—2x24+x—1 1.754877666 0.9940200+10~"
x*—2x34+x—-1 1.866760399 0.99140 £10~>
Xt —x3—2x2+1 1.905166167 0.98952 +10~*

Table: Estimates on dimy pg for some Pisot numbers 3 of degree 3 or 4.
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Thank you for listening!
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https://github.com/zfengg/SelfAffine
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