Estimates on the dimension of self-similar measures with overlaps

Zhou Feng

The Chinese University of Hong Kong

Joint work with De-Jun Feng

Anhui University Online Seminar, 30 August 2022

Outline

Background on the dimension of self-similar measures

2 Projection entropy and lower bound estimate

3 Lower bound on the dimension of Bernoulli convolutions

4 Upper bound on the dimension of Bernoulli convolutions

Self-similar sets

Consider an IFS $\{S_i\}_{i=1}^{\ell}$ of contracting maps on \mathbb{R}^d . The attractor K of this IFS, is the unique nonempty compact set satisfying

$$K = \bigcup_{i=1}^{\ell} S_i(K).$$

We call K a self-similar set if S_i are similarities, that is

$$S_i(x) = \rho_i O_i x + a_i, \qquad i = 1, \dots, \ell,$$

where O_i are orthogonal matrices, $0 < \rho_i < 1$, and $a_i \in \mathbb{R}^d$. We call K a self-affine set if S_i are affine maps.

In the following, we assume that S_i are similarities.

Self-similar measures

Given a probability weight $\mathbf{p}=(p_1,\ldots,p_\ell)$ with $p_i>0$ for $i=1,\ldots,\ell$, there is a unique Borel probability measure μ supported on K such that

$$\mu = \sum_{i=1}^{\ell} p_i \ \mu \circ S_i^{-1},$$

which is called the self-similar measure associated with $\{S_i\}_{i=1}^{\ell}$ and \mathbf{p} .

Main question

How to determine the Hausdorff dimension of self-similar measures $\dim_H \mu?$

Progress

(Hutchinson, 1981) Suppose that $\{S_i\}_{i=1}^{\ell}$ satisfies the open set condition (OSC). Then

$$\dim_{\mathcal{H}} \mu = \dim_{\mathcal{S}} \mu := \frac{\sum_{i} p_{i} \log p_{i}}{\sum_{i} p_{i} \log \rho_{i}}.$$

Consider a self-similar IFS $\{S_i\}_{i=1}^{\ell}$ on \mathbb{R} , that is

$$S_i(x) = \rho_i x + a_i, \qquad i = 1, \ldots, \ell,$$

where $0 < \rho_i < 1$ and $a_i \in \mathbb{R}$.

• (Hochman, 2014) Suppose $\{S_i\}$ satisfies the exponential separation condition $(\exists c > 0 \text{ such that } |S_{i_1...i_n} - S_{j_1...j_n}| > c^n$ for $i_1 \ldots i_n \neq j_1 \ldots j_n$). Then

$$\dim_H \mu = \min\{1, \dim_{\mathcal{S}} \mu\}.$$

This holds if all ρ_i , a_i are algebraic numbers and no exact-overlap $(S_{i_1...i_n} \neq S_{j_1...j_n}$ for $i_1 ... i_n \neq j_1 ... j_n)$.

- (Hochman, 2017) Higher dimensional extensions.
- (Rapaport, 2020) Suppose all ρ_i are algebraic numbers (no assumptions on a_i) and no exact-overlap. Then

$$\dim_{H} \mu = \min\{1, \dim_{\mathcal{S}} \mu\}. \tag{1}$$

• (Varjú, 2019; Rapaport and Varjú, 2020) Equation (1) holds if $\rho_i = \rho_j$ for $1 \le i < j \le \ell$ and all a_i are rational numbers and no exact-overlap.

The main question has not yet been completely solved, especially without separation conditions.

Main goal

To provide some algorithms for numerically estimating the dimension of overlapping self-similar measures.

Notation

Let $\{S_i\}_{i=1}^{\ell}$ be an IFS on \mathbb{R}^d . Let (Σ, σ) be the one-sided full shift over the alphabet $\{1, \dots, \ell\}$. Let $\pi \colon \Sigma = \{1, \dots, \ell\}^{\mathbb{N}} \to \mathbb{R}^d$ be the coding map defined by

$$\pi(x) = \lim_{n \to \infty} S_{x_1} \circ \cdots \circ S_{x_n}(0), \qquad x = (x_n)_{n=1}^{\infty}.$$

Given a probability vector (p_1,\ldots,p_ℓ) , let $m=\prod_{n=1}^\infty (p_1,\ldots,p_\ell)$ be the product measure on Σ . The push-forward $\mu=m\circ\pi^{-1}$ is the stationary measure satisfying

$$\mu = \sum_{i=1}^{\ell} p_i \ \mu \circ S_i^{-1}.$$

Projection entropy and dimension formula

Let $\mathcal{P} = \{[i]: i = 1, \dots, \ell\}$ be the partition of Σ consisting of the 1st order cylinders.

The projection entropy of m under π is defined by

$$h_{\pi}(m) := H_m(\mathcal{P}) - H_m(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^d)).$$

where $H_m(\mathcal{P}) = -\sum_i p_i \log p_i$ and $H_m(\cdot|\cdot)$ stands for the conditional entropy (see e.g., Parry (1981); Walters (1982)).

Theorem (Feng and Hu (2009))

Suppose that $\{S_i\}$ is a self-similar IFS and $\mu = m \circ \pi^{-1}$. Then μ is exact-dimensional ($\lim_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} = const$ for μ -a.e. x) and

$$\dim_H \mu = \frac{h_\pi(m)}{\sum_i p_i \log(1/\rho_i)}.$$

Upper bounds on $\overline{H_m(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^d))}$

Lemma

• Let $\mathcal D$ be any finite Borel partition of $\mathbb R^d$ (or K). Then

$$H_m(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^d)) \leq H_m(\mathcal{P}|\pi^{-1}\mathcal{D}).$$

• $H_m(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^d)) = \lim_{\dim(\mathcal{D})\to 0} H_m(\mathcal{P}|\pi^{-1}\mathcal{D}).$

Upper bounds on $H_m(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^d))$

Lemma

For a finite Borel partition \mathcal{D} of \mathbb{R}^d or K, suppose that

$$\mu_i(D) := p_i \mu(S_i^{-1}D) \le y_i(D), \quad i = 1, \dots, \ell, \ D \in \mathcal{D}.$$

Then

$$H_{m}(\mathcal{P}|\pi^{-1}(\mathcal{B}(\mathbb{R}^{d}))) \leq H_{m}(\mathcal{P}|\pi^{-1}\mathcal{D})$$

$$= \sum_{D \in \mathcal{D}} f(\mu_{1}(D), \dots, \mu_{\ell}(D))$$

$$\leq \sum_{D \in \mathcal{D}} f(y_{1}(D), \dots, y_{\ell}(D))$$

where
$$f(x_1,\ldots,x_\ell):=(x_1+\cdots+x_\ell)\sum_{i=1}^\ell \phi\left(\frac{x_i}{x_1+\cdots+x_\ell}\right)$$
 and $\phi(x)=-x\log x$.

An algorithm for measure estimation

Problem

How to estimate $\mu(A)$ from above with small error for a given Borel set $A \subset \mathbb{R}^d$?

By using self-similarity repeatedly,

$$\mu(A) = \sum_{i=1}^{\ell} p_i \ \mu(S_i^{-1}A)$$

$$= \sum_{i_1,...,i_n} p_{i_1} \cdots p_{i_n} \mu(S_{i_n}^{-1} \circ \cdots \circ S_{i_1}^{-1}A)$$

$$= \sum_{\substack{i_1,...,i_n \\ (S_{i_1...i_n}^{-1}A) \cap K \neq \emptyset}} p_{i_1...i_n} \mu(S_{i_1...i_n}^{-1}A)$$

During this process, some of the expanded sets fully cover supp μ and some others are disjoint from supp μ .

A diagram to illustrate the algorithm

Figure: Abstract diagram of the algorithm¹

We call the preset number *L* of iterations the iteration time.

¹This algorithm is rigorously stated in the paper.

Applications to Bernoulli convolutions

For $\beta \in (1,2)$, the self-similar measure μ_{β} associated to the IFS

$$\{S_1(x) = x/\beta, S_2(x) = x/\beta + 1\}$$

and the weight (1/2, 1/2) is called the Bernoulli convolution associated with β .

- $\dim_H \mu_{\beta} < 1$ if β is a Pisot number (Garsia, 1963).
- dim_H $\mu_{\beta} = 1$ if β is algebraic but not a root of $(0, \pm 1)$ polynomials (Hochman, 2014).
- $\dim_H \mu_\beta = 1$ for some roots of $(0, \pm 1)$ polynomials (Breuillard and Varjú, 2020; Akiyama, Feng, Kempton, and Persson, 2020).
- $\dim_H \mu_\beta = 1$ if β is transcendental (Varjú, 2019).

Open question

Are Pisot numbers the only ones so that $\dim_H \mu_\beta < 1$?

Results about uniform lower bounds of $\dim_H \mu_\beta$

Theorem (Hare and Sidorov (2018))

 $\dim_H \mu_\beta \geq 0.82$ for all $\beta \in (1,2)$.

Theorem (Kleptsyn, Pollicott, and Vytnova (2022))

 $\dim_{H} \mu_{\beta} \geq 0.96399$ for all $\beta \in (1,2)$.

(Through a different approach by estimating the L^2 -dimension of Bernoulli convolutions)

An improved uniform lower bound of $\dim_H \mu_\beta$

Let $\beta_3 \approx 1.839286755214...$ be the tribonacci number (i.e. the largest root of $x^3-x^2-x-1=0$). It is known that

$$\dim_H \mu_{\beta_3} \approx 0.98040931953 \pm 10^{-11},$$

(see, Grabner-Kirschenhofer-Tichy (2002), Feng (2005)).

Theorem

For all $\beta \in (1,2)$,

$$\dim_H \mu_{\beta} \ge 0.98040856$$
.

Moreover, the infimum $\inf_{\beta \in (1,2)} \dim_H \mu_\beta$ is attained at a parameter β_* in a small interval

$$(\beta_3 - 10^{-8}, \beta_3 + 10^{-8}).$$

Conjecture

 $\dim_H \mu_{\beta} > \dim_H \mu_{\beta_3}$ for all $\beta \in (1,2) \setminus \{\beta_3\}$.

Strategy: reduce the parameter interval

- $\dim_H \mu_\beta \ge \dim_H \mu_{\beta^k}$ for each $\beta > 1$ and $k \in \mathbb{N}$. $[\sqrt{2}, 2]$
- $\dim_H \mu_{\beta} \ge 0.98041 > \dim_H \mu_{\beta_3}$ for $\beta \in [\sqrt{2}, 1.424041]$ since $\beta^2 \ge 2$ and $\dim_H \mu_{\beta} \ge \dim_H \mu_{\beta^2} = \log 2/(2 \log \beta)$. [1.42404, 2]

Strategy: focus on the small parameter intervals

• Take $\beta \in [\sqrt{2}, 2)$ and a small $\delta > 0$, let

$$\epsilon := \epsilon(\beta, \delta) = \begin{cases} \frac{\delta}{\beta} (1 + \frac{3}{\beta^4}) & \text{if } \beta \le 1.5\\ \frac{\delta}{\beta} (1 + \frac{2}{\beta^3}) & \text{if } \beta > 1.5 \end{cases}$$

- Choose an integer N, let D_{N,β} be the partition of [0,1] generated by the endpoints of S_{I,β}([0,1]), I ∈ {1,2}^N.
- Set

$$t_{N} = \sum_{[a,b] \in \mathcal{D}_{N,\beta}} f\left(\frac{1}{2}\mu_{\beta}(S_{1,\beta}^{-1}([a-\epsilon,b+\epsilon])), \frac{1}{2}\mu_{\beta}(S_{2,\beta}^{-1}([a-\epsilon,b+\epsilon]))\right).$$

where
$$f(x_1, x_2) = (x_1 + x_2)(\phi(\frac{x_1}{x_1 + x_2}) + \phi(\frac{x_2}{x_1 + x_2}))$$
 and $\phi(x) = -x \log x$.

• Then for any $\beta' \in [\beta, \beta + \delta]$ with $\beta' \le 2$,

$$\dim_H \mu_{\beta'} \geq \frac{\log 2 - t_N}{\log(\beta + \delta)}$$
.

Note $\mu_{\beta'}(S_{i\beta'}^{-1}[a,b]) \leq \mu_{\beta}(S_{i\beta}^{-1}[a-\epsilon,b+\epsilon]).$

Partition of parameters and implementation settings

BetaStart	BetaEnd	N	Iteration times	Beta $Step\ \delta$
1.42404	1.43998	5	28	2E-05
1.44	1.45998	5	28	2E-05
1.46	1.49998	5	28	2E-05
1.5	1.68999	5	30	1E-05
1.69	1.77999	6	30	1E-05
1.78	1.799999	7	40	1E-06
1.8	1.839199	7	40	1E-06
1.8392	1.8392599	7	40	1E-07
1.83926	1.83927399	7	40	1E-08
1.839274	1.8392863	10	40	1E-08
1.83928631	1.839286579	10	40	1E-09
1.83928658	1.8392869339	13	40	1E-10
1.839286934	1.839287249	10	40	1E-09
1.83928725	1.83929899	10	40	1E-08
1.839299	1.83930999	7	40	1E-08
1.83931	1.8399999	7	40	1E-07
1.84	1.849999	5	30	1E-06
1.85	1.99999	5	30	1E-05

Table: Partition of [1.42404, 2] and the corresponding N, δ and iteration times.

18 / 25

Numerical results

Figure: Lower bounds of $\dim_H \mu_\beta$ ²

 $^{^2\}mathsf{The}\ \mathsf{data}$ is hosted at the GitHub repository <code>zfengg/DimEstimate</code>.

A self-affine example: setup

Consider a self-affine IFS $\{S_1, S_2\}$ on \mathbb{R}^2 ,

$$S_1(x,y) = (x/\alpha, \ y/\beta), \ S_2(x,y) = (x/\alpha + 1 - 1/\alpha, \ y/\beta + 1 - 1/\beta)$$

where $1 < \alpha < \beta < 2$, and choose a probability weight (1/2, 1/2).

- Let μ be the associated self-affine measures and $m = \prod_{n=1}^{\infty} \{1/2, 1/2\}.$
- Let π denote the coding map of IFS $\{S_1, S_2\}$ and π_1 denote the coding map of IFS $\{x/\alpha, x/\alpha + 1 1/\alpha\}$.
- Let $\mathcal{P}=\{[1],[2]\}$ be the partition of $\{1,2\}^{\mathbb{N}}$ according to the first symbol.

A self-affine example: theoretical formula

Then by (Feng and Hu, 2009, Theorem 2.11) or (Feng, 2020),

$$\begin{split} \dim_{H} \mu &= \frac{\log 2 - H_m(\mathcal{P}|\pi_1^{-1}\mathcal{B}(\mathbb{R}))}{\log \alpha} + \frac{H_m(\mathcal{P}|\pi_1^{-1}\mathcal{B}(\mathbb{R})) - H_m\left(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^2)\right)}{\log \beta} \\ &= \left(\frac{1}{\log \alpha} - \frac{1}{\log \beta}\right) \left(\log 2 - H_m(\mathcal{P}|\pi_1^{-1}\mathcal{B}(\mathbb{R})\right) + \frac{\log 2 - H_m\left(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^2)\right)}{\log \beta}. \end{split}$$

For each given pair (α, β) , we can apply our algorithm to numerically estimate the conditional entropies $H_m(\mathcal{P}|\pi_1^{-1}\mathcal{B}(\mathbb{R}))$ and $H_m(\mathcal{P}|\pi^{-1}\mathcal{B}(\mathbb{R}^2))$ from above, which will lead to a lower bound on $\dim_H \mu$.

A self-affine example: numerical results

(α, β)	Upper bound on	Upper bound on	Lower bound on
	$H_m(\mathcal{P} \pi_1^{-1}\mathcal{B}(\mathbb{R}))$	$H_m(\mathcal{P} \pi^{-1}\mathcal{B}(\mathbb{R}^2))$	$dim_{\mathcal{H}}\mu$
(1.2, 1.4)	0.594519457635335	0.381337271355742	1.17453512577913
(1.3, 1.7)	0.443677110679849	0.011983272405036	1.76440615371483
(1.4, 1.8)	0.358042443198116	0.000020606397791	1.60503743978513
(1.5, 1.6)	0.287856436058623	0.010339956295331	1.59002600229069
(1.5, 1.7)	0.287856436058623	0.000000000000000	1.54205227015933
(1.7, 1.71)	0.165391636766638	0.105399412288277	1.10640907763501
(1.8, 1.9)	0.064653016798699	0.035399973460099	1.03287878328719

Table: Lower bounds on the dimension of self-affine measures μ .

Upper bounds on $\dim_H \mu_\beta$ with Pisot number β

- Here we give a theoretical way to estimate the upper bound of $\dim_H \mu_\beta$ for any Pisot number β .
- Using (Feng, 2003), we built a finite tuple of non-negative matrices $\mathbf{A} = (A_1, \dots, A_k)$ such that

$$\dim_H \mu_\beta = \frac{P'(1)}{\log(1/\beta)} = \frac{h_\eta(\sigma)}{\log \beta},$$

where $P(q) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{|I| = n} ||A_I||^q$, and η is the equilibrium measure corresponding to the pressure P(q) at q = 1. Moreover, $\eta([i_1 \cdots i_n])$ can be determined from $A_{i_1} \cdots A_{i_n}$.

• Hence for any $\eta \geq 1$,

$$\begin{aligned} \dim_{H} \mu_{\beta} &\leq \frac{H_{\eta}(\mathcal{P}|\bigvee_{i=1}^{n} \sigma^{-i}\mathcal{P})}{\log \beta} \\ &= \frac{\sum_{I \in \Sigma_{n+1}} \phi(\eta([I])) - \sum_{J \in \Sigma_{n}} \phi(\eta([J]))}{\log \beta} \end{aligned}$$

where $\phi(x) = -x \log(x)$.

Numerical results on dimension estimates

Figure: The graph for x^3-x^2-1 (346 \times 346 matrices A_1,\ldots,A_{46})

Polynomial	numerical value of eta	$\dim_H \mu_eta$
$x^3 - x^2 - 1$	1.465571232	0.9995447 ± 10^{-7}
$x^3 - x - 1$	1.324717957	$0.99999503{\pm}10^{-8}$
$x^3 - 2x^2 + x - 1$	1.754877666	$0.9940200{\pm}10^{-7}$
$x^4 - 2x^3 + x - 1$	1.866760399	0.99140 ± 10^{-5}
$x^4 - x^3 - 2x^2 + 1$	1.905166167	0.98952 ± 10^{-4}

Table: Estimates on $\dim_H \mu_\beta$ for some Pisot numbers β of degree 3 or 4.

Thank you for listening!