Dimension of diagonal self-affine measures with overlaps

Zhou Feng

Technion - Israel Institute of Technology

One World Fractals, 17 June 2025

Self-affine fractals

• Affine iterated function system (IFS): $\Phi = \{\varphi_i\}_{i \in \Lambda}$ with $|\Lambda| < \infty$ and

$$\varphi_i(x) = A_i x + t_i \quad \text{for } x \in \mathbb{R}^d,$$

where $A_i \in \operatorname{GL}_d(\mathbb{R}), \|A_i\| < 1$ and $t_i \in \mathbb{R}^d$.

 Self-affine/Limit set: the unique nonempty compact set K ⊂ ℝ^d such that

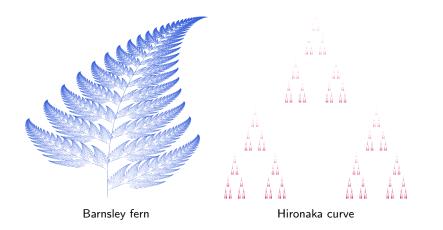
$$\mathcal{K} = \bigcup_{i \in \Lambda} \varphi_i(\mathcal{K}).$$

 Self-affine/Stationary measure: the unique Borel probability measure μ on ℝ^d such that

$$\mu = \sum_{i \in \Lambda} \mathbf{p}_i \cdot \varphi_i \mu,$$

where $p = (p_i)_{i \in \Lambda}$ is a given probability vector.

- We call K and μ self-similar if φ_i are similarities, i.e., $A_i \in \mathbb{R} \cdot O(d)$.
- We call K and μ diagonal if A_i are diagonal matrices.



Question

How large are K and μ in terms of dimensions?

Which dimensions?

The Hausdorff dimension $\dim_{\mathrm{H}} K$ and the (exact) dimension $\dim \mu$:

$$\dim \mu = \lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} \quad \text{for } \mu\text{-a.e. } x.$$

(D.-J. Feng-Hu (2009), Bárány-Käenmäki (2017), D.-J. Feng (2023))

Natural upper bounds are defined using singular value function:

$$\phi^{\mathfrak{s}}(A) = \begin{cases} \sigma_1(A) \cdots \sigma_{\lfloor \mathfrak{s} \rfloor}(A) \sigma_{\lceil \mathfrak{s} \rceil}(A)^{\mathfrak{s} - \lfloor \mathfrak{s} \rfloor} & \text{if } 0 \le \mathfrak{s} \le \mathfrak{d}; \\ |\det A|^{\mathfrak{s}/\mathfrak{d}} & \text{if } \mathfrak{s} > \mathfrak{d}, \end{cases}$$

where $\sigma_1(A) \geq \cdots \geq \sigma_d(A)$ are singular values of $A \in \operatorname{GL}_d(\mathbb{R})$.

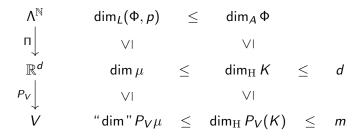
Affinity dimension dim_A Φ by Falconer ('88): the unique $s \ge 0$ such that

$$\lim_{n\to\infty}\frac{1}{n}\log\sum_{x_1\cdots x_n\in\Lambda^n}\phi^s(A_{x_1}\cdots A_{x_n})=0.$$

Lyapunov dimension $\dim_L(\Phi, p)$: the unique $t \ge 0$ such that

$$\sum_{i\in\Lambda} -p_i\log p_i + \lim_{n\to\infty} \frac{1}{n}\sum_{x_1\cdots x_n\in\Lambda^n} p_{x_1}\cdots p_{x_n}\log \phi^t(A_{x_1}\cdots A_{x_n}) = 0.$$

Relations among dimensions



- Coding map: $\Pi((x_n)_{n\in\mathbb{N}}) = \lim_{n\to\infty} \varphi_{x_1} \circ \cdots \circ \varphi_{x_n}(0).$
- $K = \Pi(\Lambda^{\mathbb{N}})$ and $\mu = \Pi\beta$, where $\beta := p^{\mathbb{N}}$ is the Bernoulli measure.
- *P_V* denotes orthogonal projection onto *m*-dim subspace *V* ≤ ℝ^d.

Much research aims to show "=" above across various settings.

Main difficulties: overlaps, nonconformality, saturation...

Overlaps by examples on the line

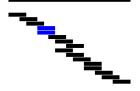
For $0 < \lambda < 1$, consider $\Phi_{\lambda} = \{\lambda x \pm 1\}$ on \mathbb{R} and p = (1/2, 1/2).

• $(\lambda = 1/3)$ Cantor-Lebesgue measure ν :

_	_	-	_	-	_	
	-	-	-	-	-	-
					••	
			ш			
			11			111

$$\dim \nu = \frac{\log 2}{\log 3}$$

• $(\lambda > 1/2)$ Bernoulli convolutions μ_{λ} :



dim
$$\mu_{\lambda} = ?$$

Conjecture (exact overlaps conjecture)

If Ψ on \mathbb{R} generates a free semigroup, then dim $\mu = \min \{1, \dim_L(\Psi, p)\}$.

Research target

• (Falconer '88, Solomyak '94, Jordan-Pollicott-Simon 2007) Assume $||A_i|| < 1/2$. Then for Lebesgue almost all translations $\mathbf{t} = \{t_i\}_{i \in \Lambda}$,

(1) dim_H $K_{\mathbf{t}} = \min\{d, \dim_A \Phi\}$ and dim $\mu_{\mathbf{t}} = \min\{d, \dim_L(\Phi, p)\}$.

• An amount of progress in understanding typical self-affine fractals.

Reveal the generic phenomenon and exhibit new phenomenons.

Want explicit examples. The more, the better.

Research target

Find verifiable and mild conditions for (1) to hold.

Exact overlaps conjecture is within this theme.

Exponential separation

Given $\psi_1, \psi_2 \colon \mathbb{R} \to \mathbb{R}$ with $\psi_i(x) = s_i x + b_i$ for i = 1, 2, define

$$egin{aligned} d(\psi_1,\psi_2) &:= egin{cases} \infty & ext{if } s_1
eq s_2; \ |b_1-b_2| & ext{otherwise}. \end{aligned}$$

For an IFS $\Psi = \{\psi_i\}_{i \in \Lambda}$ on \mathbb{R} and $n \in \mathbb{N}$, define

$$\Delta_n(\Psi) = \min\{d(\psi_u, \psi_v) \colon u \neq v \in \Lambda^n\},\$$

where $\psi_{u_1\cdots u_n} = \psi_{u_1} \circ \cdots \circ \psi_{u_n}$.

Definition (exponential separation)

We call Ψ exponentially separated if there exists c > 0 such that $\Delta_n(\Psi) > c^n$ for infinitely many $n \in \mathbb{N}$.

- If Ψ is defined by algebraic numbers and has no exact overlaps, then Ψ is exponentially separated.
- Exponential separation allows substantial overlaps and is extremely mild in the sense of small exceptions.

Self-similar:

Hochman (2014): If d = 1 and Φ is exponentially separated, then

(M)
$$\dim \mu = \min \{d, \dim_L(\Phi, p)\}$$

(S)
$$\dim K = \min \{d, \dim_A \Phi\}.$$

Towards exact overlaps conjecture: Varjú (2019), Rapaport (2022), Rapaport-Varjú (2024), D.-J. Feng-F. (2024+) ...

Hochman (2017): Self-similar fractals in \mathbb{R}^d .

Strongly irreducible and proximal:

For (M): Bárány-Hochman-Rapaport (2019) for d = 2 and SSC; Hochman-Rapaport (2022) for d = 2, nontrivial, and exp. sep.; Rapaport (2024) for d = 3 and SSC.

From (M) to (S): Morris-Shmerkin (2019) for d = 2, Morris-Sert (2023+) for $d \ge 3$.

Diagonal:

Various carpet-like cases: Bedford, McMullen, Przytcki-Urbanski, Gatzouras-Lalley, Kenyon-Peres, Barański, Feng-Wang, Fraser... Some overlapping cases: Fraser-Shmerkin, Bárány-Rams-Simon... Consider a diagonal IFS $\Phi = \{\varphi_i(x) = A_i x + t_i\}_{i \in \Lambda}$ on \mathbb{R}^d :

$$\mathcal{A}_i = \mathsf{diag}(r_{i,1},\ldots,r_{i,d}), \quad 0 < |r_{i,j}| < 1 \quad \text{ and } \quad t_i = (t_{i,1},\ldots,t_{i,d}).$$

For $1 \leq j \leq d$, define

- the jth Lyapunov exponent: $\chi_j = \sum_{i \in \Lambda} -p_i \log |r_{i,j}|$.
- the induced IFS on jth axis: $\Phi_j = \{x \mapsto r_{i,j}x + t_{i,j}\}_{i \in \Lambda}$.

Theorem (Rapaport 2023+)

If for $1 \le j_1 < j_2 \le d$ there is $i \in \Lambda$ with $|r_{i,j_1}| \ne |r_{i,j_2}|$, and Φ_j is exponentially separated for all j, then $\dim_{\mathrm{H}} K_{\Phi} = \min \{d, \dim_A \Phi\}$.

Rapaport deduces it from his analogous result for diagonal self-affine measures, under the additional assumption:

$$(\bigstar) \qquad \exists \mathbf{c} \in \mathbb{R}^d, \, \forall \, i \in \Lambda \colon (\log |r_{i,1}|, \ldots, \log |r_{i,d}|) \in \mathbb{R}\mathbf{c}.$$

In particular, (\bigstar) holds when A_i is the same for $i \in \Lambda$.

The argument crucially relies on (\bigstar) . (to be discussed later)

Theorem (F. 2025+)

Suppose

1
$$\chi_{j_1} \neq \chi_{j_2}$$
 for $1 \le j_1 < j_2 \le d$.

2 Φ_j is exponentially separated for $1 \le j \le d$.

Then dim $\mu = \min \{d, \dim_L(\Phi, p)\}.$

1 is necessary by saturation: e.g.,



2 is expected to be relaxed by no exact overlaps. When d = 1, it is the exact overlaps conjecture, which is famous and open.

- **1** Determine dim μ when Φ is defined by algebraic parameters without exact overlaps.
- 2 Dimension for generic systems with explicit set of exceptions which is small in terms of packing dimension.
- **3** Determine the ergodic measures μ on K such that dim μ = dim_H K.
- Dimension of orthogonal projections of certain overlapping self-affine sets.

(A concrete example is in the next page to illustrate the last two applications:)

A concrete example

Consider the IFS on \mathbb{R}^2 :

$$\Phi = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{5}{7}x \\ \frac{3}{5}y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{3}{5}x \\ \frac{5}{7}y \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

- dim_A $\Phi = s \approx 1.66$, where $\frac{5}{7} \left(\frac{3}{5}\right)^{s-1} + \frac{3}{5} \left(\frac{5}{7}\right)^{s-1} = 1$.
- There are exactly two ergodic measures μ₁, μ₂ which are self-affine such that

$$\dim \mu_1 = \dim \mu_2 = \dim_{\mathrm{H}} K = \dim_A \Phi.$$

• (Pyörälä (2025) + above) For all 1-dim subspace $V < \mathbb{R}^2$, dim_H $P_V(K) = 1$.

About the proof

Why assume condition (★)?

To establish the uniformness of self-affine measures across scales, which is one of the key ingredients for proving entropy increase.

• The disintegration: Fix $N \in \mathbb{N}$. Partition $\Lambda^{\mathbb{N}}$ into \mathcal{A} such that

$$\mathcal{A}(x) = \mathcal{A}(y) \iff A_{x_{kN+1}} \cdots A_{x_{(k+1)N}} = A_{y_{kN+1}} \cdots A_{y_{(k+1)N}} \text{ for } k \ge 0.$$

Let $\{\beta^{\omega}\}_{\omega\in\Omega}$ be the disintegration of β w.r.t. \mathcal{A} . Then $\beta = \int \beta^{\omega} d\mathbf{P}(\omega)$. Define $\mu^{\omega} = \Pi \beta^{\omega}$. Applying Π gives $\mu = \int \mu^{\omega} d\mathbf{P}(\omega)$.

Saglietti-Shmerkin-Solomyak (2018), Galicer-Saglietti-Shmerkin-Yavicoli (2016)

- Exact dimensionality and Ledrappier-Young formula for random measures:
 D.-J. Feng (2023) + Falconer-Jin (2014) + handle multiple disintegrations
 It also holds for partitions like ∨[∞]_{i=0} σ^{-iN}Γ_N for any partition Γ_N of Λ^N.
- Entropy increase for random measures:

Strategy: Rapaport (2023+)

Difficulty: Random measures μ^{ω} are merely *dynamically self-affine* and nonconformal partitions $\mathcal{E}_{n}^{\omega} := A^{\omega|n}\mathcal{D}$ depend on ω .

Method: Feel multiscale estimates and use dynamics on (Ω, \mathbf{P}, T) .

Theorem (Exact dimensionality for disintegrations)

There exists dim $A \ge 0$ such that for **P**-a.e. ω , μ^{ω} is exact dimensional with dimension given by dim A satisfying a Ledrappier-Young formula.

$$\dim \mathcal{A} = \sum_{j=1}^{d} \frac{\mathbf{h}_{[j-1]}^{\mathcal{C},\mathcal{A}} - \mathbf{h}_{[j]}^{\mathcal{C},\mathcal{A}}}{\chi_{j}}.$$

For example: 0 < z-axis < xz-plane $< \mathbb{R}^3$.

Theorem (Entropy increase for random measures)

Suppose dim $\mathcal{A} < d$ and dim $\pi_J \mathcal{A} = |J|$ for each $J \subsetneq [d]$. For $\varepsilon \in (0,1)$ there exists $\delta = \delta(\varepsilon) > 0$ such that: Let $\eta \in (0,1)$ be with $\varepsilon^{-1} \ll \eta^{-1}$. There exists $\Omega' \subset \Omega$ with $\mathbf{P}(\Omega') > 1 - \eta$ so that for $\omega \in \Omega'$ and $n \in \mathbb{N}$ with $\eta^{-1} \ll n$: Let $\theta \in \mathcal{M}_c(\mathbb{R}^d)$ with diam(supp $\theta) \le 1/\varepsilon$ and $\frac{1}{n}H(\theta, \mathcal{E}_n^{\omega}) > \varepsilon$. Then

$$\frac{1}{n}H(\theta*\mu^{\omega},\mathcal{E}_{n}^{\omega})\geq\frac{1}{n}H(\mu^{\omega},\mathcal{E}_{n}^{\omega})+\delta.$$

Thank you for listening!