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Self-affine fractals

Affine iterated function system (IFS): ® = {@;}; 5 with [A| < oo
and
pi(x) =Aix+t; forx e R,

where A; € GLd(R), ||A,H <land t; e R,

Self-affine/Limit set: the unique nonempty compact set K C R
such that
K =Jwi(K).
ien

Self-affine/Stationary measure: the unique Borel probability
measure 4 on RY such that

H= Z Pi - Pilt,
ien
where p = (p;)iea is a given probability vector.
We call K and p self-similar if o; are similarities, i.e., A; € R-O(d).
We call K and p diagonal if A; are diagonal matrices.
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Barnsley fern Hironaka curve

How large are K and p in terms of dimensions?
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Which dimensions?

The Hausdorff dimension dimy K and the (exact) dimension dim p:
| B
dim 1 — lim (08#(B(x. 1)
r—0 log r
(D.-J. Feng-Hu (2009), Barany-Kdenmaki (2017), D.-J. Feng (2023))

for p-a.e. x.

Natural upper bounds are defined using singular value function:

¢S(A) _ O'l(A) . .(-jaLsJ (A)O’(S" (A)SfLSJ |f 0<s< d;
|det Al*/ if s> d,

where g1(A) > -+ > 04(A) are singular values of A € GLy4(R).

Affinity dimension dima ® by Falconer ('88): the unique s > 0 such that
" s
Jim —log ZEA ¢* (A - As,) = 0.
X1+ Xp ENP

Lyapunov dimension dim;(®, p): the unique ¢t > 0 such that

. ]- t
Z_pi logpi"'nll)moog Z Pxi " Px, |Og(j§ (Ax1 "'Axn) =0.

ieh X1+ Xp EA"
4/17



Relations among dimensions

AN dim/ (¥, p) < dima @

”J Vi VI

RY dim p < dmgK < d
Pvl VI VI

V “dim"Pyp < dimgPy(K) < m

® Coding map: N((xn)nen) = liMp_so0 s © -+ 0 94, (0).
® K =N(AY) and p = MNp, where 3 := p is the Bernoulli measure.

® Py denotes orthogonal projection onto m-dim subspace V < RY.

u_n

Much research aims to show “=" above across various settings. J

Main difficulties: overlaps, nonconformality, saturation. .. )
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Overlaps by examples on the line

For 0 < A < 1, consider &, = {A\x £ 1} on R and p=(1/2,1/2).

® (A =1/3) Cantor-Lebesgue measure v:

e = - == _ log 2
naown wnown dimyv = —
W log 3
® (A > 1/2) Bernoulli convolutions fsy:
dim U = ?

Conjecture (exact overlaps conjecture)

If W on R generates a free semigroup, then dim = min {1, dim.(V, p)}.
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Research target

® (Falconer '88, Solomyak '94, Jordan-Pollicott-Simon 2007) Assume
|Aill < 1/2. Then for Lebesgue almost all translations t = {t;};x,

(1) dimyg Ky = min{d,dima ®} and dim py = min{d,dim.(®, p)}.
® An amount of progress in understanding typical self-affine fractals.

Reveal the generic phenomenon and exhibit new phenomenons.

—

Want explicit examples. The more, the better.

N

Research target

Find verifiable and mild conditions for (1) to hold.

Exact overlaps conjecture is within this theme.
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Exponential separation

Given 91,197 R — R with ¥;(x) = six + b; for i = 1,2, define

00 if 51 # ;
d(v1, =
(1, 2) {|b1 — by| otherwise.
For an IFS W = {4;};ca on R and n € N, define
Ap(V) = min{d(Yy,¥y): u#veN}

where ...y, = Yy, 0 -0 Yy,.

Definition (exponential separation)

We call W exponentially separated if there exists ¢ > 0 such that
Ap(V) > ¢” for infinitely many n € N.

® |f W is defined by algebraic numbers and has no exact
overlaps, then W is exponentially separated.
® Exponential separation allows substantial overlaps and is

extremely mild in the sense of small exceptions.
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Self-similar:

Hochman (2014): If d =1 and & is exponentially separated, then
(M) dim g = min {d,dim/(®, p)}

(S) dim K = min {d,dima ¢} .

Towards exact overlaps conjecture: Varji (2019), Rapaport (2022),
Rapaport-Varji (2024), D.-J. Feng-F. (2024+) ...

Hochman (2017): Self-similar fractals in R9,

Strongly irreducible and proximal:

For (M): Bardny-Hochman-Rapaport (2019) for d = 2 and SSC;
Hochman-Rapaport (2022) for d = 2, nontrivial, and exp. sep.;
Rapaport (2024) for d = 3 and SSC.

From (M) to (S): Morris-Shmerkin (2019) for d = 2,

Morris-Sert (2023+) for d > 3.

Diagonal:

Various carpet-like cases: Bedford, McMullen, Przytcki-Urbanski,
Gatzouras-Lalley, Kenyon-Peres, Baranski, Feng-Wang, Fraser. ..
Some overlapping cases: Fraser-Shmerkin, Barany-Rams-Simon. . .
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Consider a diagonal IFS ® = {;(x) = A;x + t;}ien on RY:
A;:diag(r,-71,...,r,-7d), 0< |r,-7j| <1 and ti = (t,'71,...,t,'7d).
For 1 <j < d, define

® the jth Lyapunov exponent: x; = ;. —piloglr .

® the induced IFS on jth axis: ®; = {x > r; jx + ti j};cn-

Theorem (Rapaport 2023+)

If for 1 < j1 < jop < d thereisi € N\ with |r; | # |rij,|, and ®; is
exponentially separated for all j, then dimpg Ko = min {d,dima ®}.

Rapaport deduces it from his analogous result for diagonal
self-affine measures, under the additional assumption:

(%) Jce R VieN: (log|riil,- .., log|rql) € Re.

In particular, (%) holds when A; is the same for i € A.

The argument crucially relies on (% ). (to be discussed later)
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Main result

Theorem (F. 2025+)
Suppose

O x; X, for1<ji1<jp<d.

® &; is exponentially separated for 1 < j < d.
Then dim g = min{d,dim/(®, p)}.

@ is necessary by saturation: e.g.,

@ is expected to be relaxed by no exact overlaps. When d =1,
it is the exact overlaps conjecture, which is famous and open.
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Applications

@ Determine dim i when @ is defined by algebraic parameters
without exact overlaps.

® Dimension for generic systems with explicit set of exceptions
which is small in terms of packing dimension.

© Determine the ergodic measures i on K such that
dim y = dimyg K.

O Dimension of orthogonal projections of certain overlapping
self-affine sets.

(A concrete example is in the next page to illustrate the last two applications:)
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A concrete example

Consider the IFS on R2:

3

e dimg ® = s ~ 1.66, where % (%)S_l + 3 (%)5_1 =1.

® There are exactly two ergodic measures p1, o which are
self-affine such that

dim g1 = dim pup = dimg K = dimy &.
o (Pyorala (2025) + above) For all 1-dim subspace V < R?,
dimH P\/(K) =1.
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About the proof

® Why assume condition (%)?

To establish the uniformness of self-affine measures across scales, which is
one of the key ingredients for proving entropy increase.

® The disintegration: Fix N € N. Partition A" into A such that

A(x) = Aly) <= Axingr - A =A for k > 0.

X(k+1)N Y+t T Yk

Let {8“}weq be the disintegration of 8 w.r.t. A. Then 3 = [ 8* dP(w).
Define p¥ = NB“. Applying I gives pn = [ p* dP(w).
Saglietti-Shmerkin-Solomyak (2018), Galicer-Saglietti-Shmerkin-Yavicoli (2016)
® Exact dimensionality and Ledrappier-Young formula for random measures:
D.-J. Feng (2023) + Falconer-Jin (2014) + handle multiple disintegrations
It also holds for partitions like V2,0 ~"NTy for any partition 'y of AV,
® Entropy increase for random measures:
Strategy: Rapaport (2023+)

Difficulty: Random measures p are merely dynamically self-affine and
nonconformal partitions £ := A“!"D depend on w.

Method: Feel multiscale estimates and use dynamics on (2,P, T).

14 /17



Exact dimensionality for random measures

Theorem (Exact dimensionality for disintegrations)

There exists dim A > 0 such that for P-a.e. w, u® is exact dimensional
with dimension given by dim A satisfying a Ledrappier-Young formula.

d h{7, —hA
dimA = Zib_l] [
j=1 X

For example: 0 < z-axis < xz-plane < R3.
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Entropy increase for random measures

Theorem (Entropy increase for random measures)

Suppose dim A < d and dim 7 A = |J| for each J C [d]. For

e € (0,1) there exists 6 = d(e) > 0 such that: Let n € (0,1) be
with et < n=t. There exists Q' C Q with P(Q') > 1 — 1 so that
forw € Q" and n € N with n=! < n: Let 6 € M(RY) with
diam(supp0) < 1/e and 1H(0,£%) > c. Then

1 1 ,
“H (0 1, E5) 2 H (1, E5) + 0.
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Thank you for listening!
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