
DIMENSION OF DIAGONAL SELF-AFFINE MEASURES WITH

EXPONENTIALLY SEPARATED PROJECTIONS

ZHOU FENG

Abstract. Let µ be a self-affine measure associated with a diagonal affine iterated function sys-

tem (IFS) Φ = {(x1, . . . , xd) 7→ (ri,1x1+ti,1, . . . , ri,dxd+ti,d)}i∈Λ on Rd and a probability vector

p = (pi)i∈Λ. For 1 ≤ j ≤ d, denote the j-th the Lyapunov exponent by χj :=
∑

i∈Λ−pi log |ri,j |,
and define the IFS induced by Φ on the j-th coordinate as Φj := {x 7→ ri,jx + ti,j}i∈Λ. We

prove that if χj1 6= χj2 for 1 ≤ j1 < j2 ≤ d, and Φj is exponentially separated for 1 ≤ j ≤ d,

then the dimension of µ is the minimum of d and its Lyapunov dimension. This confirms a

conjecture of Rapaport [46] by removing the additional assumption that the linear parts of the

maps in Φ are contained in a 1-dimensional subgroup. One of the main ingredients of the proof

involves disintegrating µ into random measures with convolution structure. In the course of the

proof, we establish new results on dimension and entropy increase for these random measures.

1. Introduction

1.1. Background and main results. Computing the dimension of self-affine fractals remains

a fundamental open problem in fractal geometry; see [7, 14]. This paper focuses on determining

the dimension of diagonal self-affine measures under mild assumptions.

An affine iterated function systems (IFS) is a nonempty finite collection Φ = {ϕi(x) = Aix+

ti}i∈Λ of contracting affine maps on Rd. It is well known [31] that there is a unique nonempty

compact KΦ, called the self-affine set, satisfying KΦ = ∪i∈Λ ϕi(KΦ). Given a probability vector

p = (pi)i∈Λ, the associated self-affine measure µ is the unique Borel probability measure on Rd

such that µ =
∑

i∈Λ piϕiµ, where ϕiµ = µ ◦ ϕ−1
i denotes the pushforward measure. When the

linear parts {Ai}i∈Λ are diagonal matrices, Φ and µ are referred to as diagonal. In recent years,

the exact dimensionality of self-affine measures has been established (see [19] for diagonal case

and [4, 17] for general case). That is, there exists a number dimµ, called the dimension of µ,

such that

lim
r→0

logB(x, r)

log r
= dimµ for µ-a.e. x,

where B(x, r) denotes the closed ball centered at x with radius r.

The dimension theory of self-affine sets and measures has been extensively studied. Notably,

Falconer [13] introduced the affinity dimension dimA Φ which only depends on the linear parts

{Ai}i∈Λ. He proved that if ‖Ai‖ < 1/2 for all i ∈ Λ, then for Lebesgue almost all translations

{ti}i∈Λ,

(1.1) dimHKΦ = min {d,dimA Φ} ,
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where dimH denotes the Hausdorff dimension. (In fact, Falconer proved this for ‖Ai‖ < 1/3;

Solomyak [52] later showed that ‖Ai‖ < 1/2 suffices.) Similar results for self-affine measures

were obtained by Jordan, Pollicott and Simon [32], who showed that, under the same norm

condition, for Lebesgue almost all {ti}i∈Λ,

(1.2) dimµ = min {d,dimL(Φ, p)} ,

where dimL(Φ, p) is the Lyapunov dimension defined in (1.4).

While the above results provide a characterization of typical cases, finding explicit and ver-

ifiable conditions for (1.1) and (1.2) to hold remains an open challenge. Recently, significant

progress has been made in this direction, particularly under the assumption that {Ai}i∈Λ is

strongly irreducible (see [6, 29, 42] for d = 2 and [41, 47] for d = 3).

Diagonal systems, which contrast with and complement the strongly irreducible case, form

a significant subclass of IFSs that have been studied since the 1980s [9, 39]. In this paper, we

consider a diagonal affine IFS on Rd:

(1.3) Φ = {ϕi(x) = Aix+ ti}i∈Λ,

where Ai = diag(ri,1, . . . , ri,d) (0 < |ri,j | < 1) are diagonal matrices, and ti = (ti,1, . . . , ti,d) ∈ Rd.
Let KΦ denote the corresponding self-affine set. Given a probability vector p = (pi)i∈Λ, let

µ be the self-affine measure associated with Φ and p. To state the results concerning the

dimensions of KΦ and µ, we introduce some definitions. For 1 ≤ j ≤ d, denote the j-th

Lyapunov exponent by χj :=
∑

i∈Λ−pi log|ri,j |, and define the IFS induced by Φ on the j-th

coordinate as Φj := {x 7→ ri,jx+ ti,j}i∈Λ. Without loss of generality, we assume after possibly

permuting the coordinates that χ1 ≤ · · · ≤ χd. The Lyapunov dimension for Φ and p is given

by

(1.4) dimL(Φ, p) = fΦ(H(p)),

where H(p) :=
∑

i∈Λ−pi log pi is the entropy, and fΦ : [0,∞)→ [0,∞) is a function defined as

(1.5) fΦ(x) =


j +

x−
∑j

b=1 χb

χj+1
if x ∈

[∑j
b=1 χb,

∑j+1
b=1 χb

)
for some 0 ≤ j ≤ d− 1;

d x∑d
b=1 χb

if x ∈
[∑d

b=1 χb,∞
)
.

Next, we introduce the mild separation conditions, originally arising from Hochman’s seminal

work [26]. Given two affine maps ψ1, ψ2 : R→ R with ψi(x) = six+ bi for i = 1, 2, define

d(ψ1, ψ2) :=

∞ if s1 6= s2;

|b1 − b2| otherwise.

For an affine IFS Ψ = {ψi}i∈Λ on R and n ∈ N, denote ψu = ψu1 · · ·ψun for u = u1 · · ·un ∈ Λn.

Define

(1.6) ∆n(Ψ) = min{d(ψu, ψv) : u, v ∈ Λn, u 6= v}

and

(1.7) Sn(Ψ) = min{d(ψu, ψv) : u, v ∈ Λn, ψu 6= ψv},

with the convention min ∅ = 0.
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Definition 1.1. Let Ψ be an affine IFS on R. We call Ψ exponentially separated (resp. Dio-

phantine) if there exists c > 0 so that ∆n(Ψ) > cn (resp. Sn(Ψ) > cn) for infinitely many n ∈ N.

We say Ψ has no exact overlaps if ∆n(Ψ) > 0 for all n ∈ N, or equivalently, the semigroup

generated by Ψ is free.

Remark 1.2. It follows from Definition 1.1 that Ψ is exponentially separated if and only if Ψ is

both Diophantine and has no exact overlaps. Furthermore, Ψ is Diophantine if it is defined by

algebraic parameters (see [26]).

Very recently, Rapaport [46] made a breakthrough in the dimension theory of diagonal self-

affine sets and measures. Specifically, [46, Theorem 1.3] establishes that (1.1) holds if, for each

1 ≤ j1 < j2 ≤ d there is i ∈ Λ so that |ri,j1 | 6= |ri,j2 |, and Φj is exponentially separated for

1 ≤ j ≤ d. This builds on an analogous result regarding the dimension of µ ([46, Theorem 1.7])

under the additional assumption that the linear parts of Φ lie within a 1-dimensional subgroup.

That is, there exist c1, . . . , cd > 0 such that

(|ri,1|, . . . , |ri,d|) ∈
{

(ct1, . . . , c
t
d) : t ∈ R

}
for all i ∈ Λ.

This assumption is satisfied, in particular, when Ai is the same for all i ∈ Λ. Regarding this

assumption, Rapaport pointed out that his argument crucially depends on it, but he expects the

result remains true without it (see [46, Remark 1.8]). Our main result confirms his conjecture

by removing the additional assumption.

Theorem 1.3. If χ1 < · · · < χd and Φj is exponentially separated for 1 ≤ j ≤ d, then

dimµ = min {d,dimL(Φ, p)} .

Before discussing the proof of Theorem 1.3 in Section 1.3, we provide some remarks on the

assumptions and discuss several applications.

Remark 1.4. Due to the phenomenon of saturation (see [27, Example 1.2]), it is not hard

to find examples showing that the assumption χ1 < · · · < χd cannot be dropped. For the

reader’s convenience, we give one such example. Let λ ∈ Q∩(1/
√

2, 1) and n > 2 such that

λn < 1/3. Define Ψ = {ψ0(x) = λx, ψ1(x) = λx+ 1}. Consider the IFS Φ = {ϕu}u∈{0,1}n on R2

given by ϕ0···0(x, y) = (λnx+ ψ1···1(0), λny), ϕ1···1(x, y) = (λnx, λny + ψ1···1(0)) and ϕu(x, y) =

(λnx+ψu(0), λny+ψu(0)) for u /∈ {0 · · · 0, 1 · · · 1}. Let µ the self-affine measure associated with

Φ and the uniform probability vector p on {0, 1}n. Since the orthogonal projection of Φ onto

the line {(t,−t) : t ∈ R} generates a Cantor set, it follows from λn < 1/3 and λ > 1/
√

2 that

dimµ ≤ 1 +
log 3

−n log λ
< 2 = min

{
2,

log 2

− log λ

}
= min {2, dimL(Φ, p)} .

On the other hand, by Remark 1.2 and λ ∈ Q, the IFS Φ1 = Φ2 = Ψn = {ψu}u∈{0,1}n is

exponentially separated.

Remark 1.5. Various carpet-like examples (see e.g. [3, 9, 20, 22, 36, 39]) indicate that it is

necessary to assume that Φj has no exact overlaps for 1 ≤ j ≤ d. One may expect that the

result remains true under this necessary assumption. Recently, Rapaport and Ren [49] verified
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this conjecture for homogeneous diagonal IFSs with rational translations.1 However, even when

d = 1, this conjecture is considered one of the major open problems in fractal geometry and

well beyond our reach (see [28, 55]).

1.2. Applications. By Remark 1.2, the following is a direct application of Theorem 1.3.

Corollary 1.6. Suppose χ1 < · · · < χd. If for 1 ≤ j ≤ d, Φj is defined by algebraic parameters

and has no exact overlaps, then dimµ = min {d,dimL(Φ, p)}.

Below we determine the dimension of a concrete new example by Corollary 1.6.

Example 1.7. Let a, b ∈ (1/2, 1) be distinct algebraic numbers such that P (a, b) 6= 0 for each

two-variable polynomial P with coefficients in {0,±1} and P (0, 0) = 1. For example, choose

a = q1/q2, b = q2/q3 ∈ Q, where q1, q2, q3 are distinct prime numbers. Let µ be the self-affine

measure associated with the IFS Φ = {(x, y) 7→ (αx, βy), (x, y) 7→ (βx+ 1, αy + 1)} on R2 and

the probability vector p = (p1, 1− p1) with p1 ∈ (0, 1/2). Then dimµ = min{2, dimL(Φ, p)}.

Next, we give a result about the typical validity of (1.2) in the spirit as [26, Theorem 1.8].

By dimP we denote the packing dimension. Recall that dimHE ≤ dimPE for E ⊂ Rd. For

m ≥ 2, let ∆m−1 denote the set of probability vectors in Rm.

Corollary 1.8. Let m ≥ 2 and let t = (ti,j)1≤i≤m,1≤j≤d ∈ Rdm such that ti1,j 6= ti2,j for 1 ≤
i1 < i2 ≤ m and 1 ≤ j ≤ d. For r = (ri,j)1≤i≤m,1≤j≤d ∈ ((−1, 1)\{0})dm and p ∈ ∆m−1, let µr,p

denote the self-affine measure associated with the IFS Φr = {(xj)1≤j≤d 7→ (ri,jxj + ti,j)1≤j≤d}mi=1

and the probability vector p. Then, there exists Et ⊂ ((−1, 1) \ {0})dm with dimP Et ≤ dm − 1

such that for r /∈ Et, there exists Fr ⊂ ∆m−1 with dimPFr ≤ m − 2 so that for p /∈ Fr,

dimµr,p = min {d,dimL(Φr, p)}.

Proof. For r = (ri,j)1≤i≤m,1≤j≤d and 1 ≤ j ≤ d, let rj = (ri,j)
m
i=1. Consider the IFS Φ(rj) =

{x 7→ ri,jx+ ti,j}mi=1 on R, with its coding map denoted by ΠΦ(rj) (see (1.15)). For distinct

sequences x = (xk), y = (yk) ∈ {1, . . . ,m}N, there exists n ∈ N such that xn 6= yn and xk = yk

for k < n. This gives:

∆x,y(rj) := ΠΦ(rj)(x)−ΠΦ(rj)(y)

= rx1,j · · · rxn−1,j

(
(txn,j − tyn,j) +

∞∑
k=n

(
rxn,j · · · rxk,jtxk+1,j − ryn,j · · · ryk,jtyk+1,j

))
.

Since t1,j , . . . , tm,j are distinct, we have txn − tyn 6= 0. Consequently, ∆x,y(rj) 6= 0 if the

norm of rj is sufficiently small, ensuring that the summation in the above expression is small,

depending on (ti,j)
m
i=1. Thus, ∆x,y(rj) is a nonzero real analytic function of rj on each connected

component of ((−1, 1) \ {0})m. By applying [27, Theorem 1.10], for each 1 ≤ j ≤ d, there exists

Ej ⊂ ((−1, 1) \ {0})m with dimP Ej ≤ m − 1 such that Φ(rj) is exponentially separated for

rj /∈ Ej . Define

E ′t =
d⋃
j=1

{
r ∈ ((−1, 1) \ {0})dm : rj ∈ Ej

}
,

1The author believes that incorporating the results from [18] into [49] can relax the assumption of rational

translations to algebraic translations.
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and

E =
⋃

1≤j1<j2≤d

{
(ri,j)1≤i≤m,1≤j≤d ∈ ((−1, 1) \ {0})dm : |ri,j1 | = |ri,j2 | for 1 ≤ i ≤ m

}
.

Set Et := E ′t ∪E . Thus, for r /∈ Et and 1 ≤ j ≤ d, Φ(rj) is exponentially separated. Since

dimP E ′t ≤ dm− 1 and dimP E ≤ dm−m, we have dimP Et ≤ dm− 1.

For r = (ri,j)1≤i≤m,1≤j≤d ∈ ((−1, 1) \ {0})dm \ Et and 1 ≤ j1 < j2 ≤ d, define a vector

vj1,j2 := (log|ri,j1 |− log|ri,j2 |)mi=1. Then vj1,j2 6= 0 by r /∈ E . If vj1,j2 is parallel to (1, . . . , 1), then

∆m−1 ∩ v⊥j1,j2 = ∅, where v⊥j1,j2 denotes the orthogonal complement of vj1,j2 . Define

F ′r =
⋃{

v⊥j1,j2 : 1 ≤ j1 < j2 ≤ d and vj1,j2 is not parallel to (1, . . . , 1)
}
.

Set Fr := ∆m−1 ∩F ′r. Then dimPFr ≤ m− 2. For p /∈ Fr, the Lyapunov exponents of µr,p are

distinct. The proof is finished by Theorem 1.3. �

We determine the measures of full dimension on certain overlapping diagonal self-affine sets

(see [8, 11, 25, 33, 35, 40] for further discussion on this topic). A measure ν on KΦ is called

an ergodic measure of full dimension if dim ν = dimHKΦ and ν = Πν̄, where Π is the coding

map in (1.15), and ν̄ is an ergodic shift-invariant measure on ΛN. Let Sd denote the symmetric

group over {1, . . . , d}. For σ ∈ Sd, i ∈ Σ and s ≥ 0, define

(1.8) φsσ(i) =

|ri,σ(1)| · · · |ri,σ(bsc)| · |ri,σ(bsc+1)|s−bsc if s < d;

|ri,1 · · · ri,d|s/d if s ≥ d.

By [23, Theorem 2.1], the affinity dimension dimA Φ is the unique s ≥ 0 such that

(1.9) max
σ∈Sd

∑
i∈Λ

φsσ(i) = 1.

Corollary 1.9. Let Φ be as in (1.3) with d = 2. Suppose |ri,1| 6= |ri,2| for some i ∈ Λ,

and Φ1,Φ2 are exponentially separated. Define Σ :=
{
σ ∈ S2 :

∑
i∈Λ φ

dimA Φ
σ (i) = 1

}
, which is

nonempty by (1.9). If 0 < dimA Φ < 2, then the ergodic measures of full dimension on KΦ are

precisely the self-affine measures associated with Φ and the probability vectors (φdimA Φ
σ (i))i∈Λ

for σ ∈ Σ. In particular, Σ = S2 when (|ri,1|)i∈Λ is a permutation of (|ri,2|)i∈Λ.

Proof. We first show that the ergodic equilibrium states for the singular value function of

diagonal matrices are Bernoulli. Let ν be an ergodic shift-invariant measure on ΛN. The

Lyapunov dimension dimL ν is defined as the unique s ≥ 0 satisfying

(1.10) h(ν) + lim
n→∞

1

n

∫
log φs(Ax|n) dν(x) = 0,

where h(ν) denotes the measure-theoretic entropy (see [56]), Ax|n = Ax1 · · ·Axn for x = (xn) ∈
ΛN, and φs(A) is the singular value function of A (see [13]). For k ∈ Z∩[0, d], it is well known [13]

that φk(A) = ‖A∧k‖, where ∧ denotes the exterior product, A∧k is the linear map induced by

A on ∧kRd as A∧k(v1 ∧ · · · ∧ vk) := (Av1) ∧ · · · ∧ (Avk) for v1, . . . , vk ∈ Rd, and ‖·‖ is the

standard Euclidean operator norm on ∧kRd. Since ∧kRd = span
{
eσ(1) ∧ · · · ∧ eσ(k) : σ ∈ Sd

}
is
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a finite-dimensional vector space, where e1, . . . , ed denote the standard basis of Rd, we have for

k ∈ Z∩[0, d],

lim
n→∞

1

n

∫
log φk(Ax|n) dν(x) = lim

n→∞

1

n

∫
log‖A∧kx|n‖ dν(x)

= lim
n→∞

1

n

∫
max
σ∈Sd

log
∥∥∥A∧kx|n (eσ(1) ∧ · · · ∧ eσ(k)

)∥∥∥ dν(x)

= max
σ∈Sd

∑
i∈Λ

ν([i]) log φkσ(i),

where [i] := {(xn) ∈ ΛN : x1 = i}, while in the last equality we have used that {Ai}i∈Λ are

diagonal, and ν is shift-invariant. From this and φs(A) =
(
φbsc(A)

)bsc+1−s (
φbsc+1(A)

)s−bsc
for

s ≥ 0, it follows that

(1.11) lim
n→∞

1

n

∫
log φs(Ax|n) dν(x) = max

σ∈Sd

∑
i∈Λ

ν([i]) log φsσ(i).

Let βν denote the Bernoulli measure on ΛN with marginal (ν([i]))i∈Λ. It is well known (see

e.g. [56]) that h(ν) ≤ h(βν), with equality if and only if ν = βν . From this, (1.10) and (1.11),

it follows that dimL ν ≤ dimL βν , with equality if and only if ν = βν . Combining this with

dim Πν ≤ dimL ν ≤ dimA Φ (see [32]), [46, Theorem 1.3], and dimA Φ < 2 yields

(1.12) dim Πν ≤ dimL ν ≤ dimL βν ≤ dimA Φ = dimH KΦ,

where the second inequality is strict unless ν = βν , that is, ν is Bernoulli.

Write s0 := dimA Φ. By Gibbs’ inequality (see e.g. [56, Lemma 9.9]) and (1.9), the probability

vectors pσ := (φs0σ (i))i∈Λ for σ ∈ Σ are precisely the probability vectors q = (qi)i∈Λ satisfying∑
i∈Λ

−qi log qi + max
σ∈Sd

∑
i∈Λ

qi log φs0σ (i) = max
σ∈Sd

log
∑
i∈Λ

φs0σ (i) = 0.

By (1.10) and (1.11), this implies that dimL(Φ, pσ) = dimA Φ for σ ∈ Σ.

Let σ ∈ Σ, and let µσ be the self-affine measure associated with Φ and pσ. By (1.12) and

dimL(Φ, pσ) = dimA Φ, it suffices to prove that dimµσ = dimL(Φ, pσ). From Theorem 1.3, it

remains to verify that χσ(1)(pσ) 6= χσ(2)(pσ). If there exists α > 0 such that |ri,σ(1)|/|ri,σ(2)| = α

for all i ∈ Λ, then α 6= 1 since |ri,σ(1)| 6= |ri,σ(2)| for some i ∈ Λ, implying χσ(1)(pσ) 6= χσ(2)(pσ).

Now suppose there exist some i1 6= i2 ∈ Λ such that |ri1,σ(1)|/|ri1,σ(2)| 6= |ri2,σ(1)|/|ri2,σ(2)|.
Define t := s0 if s0 ∈ (0, 1] and t := 2− s0 if s0 ∈ (1, 2). Then

t
(
χσ(2)(pσ)− χσ(1)(pσ)

)
=
∑
i∈Λ

pσ(i) log
|ri,σ(2)|t

|ri,σ(1)|t

< log
∑
i∈Λ

pσ(i)
|ri,σ(2)|t

|ri,σ(1)|t

≤ log
∑
i∈Λ

φs0σ (i) = 0,

where the strict inequality is by the concavity of log(·) and |ri1,σ(1)|/|ri1,σ(2)| 6= |ri2,σ(1)|/|ri2,σ(2)|,
while the last inequality follows from maxσ′∈S2

∑
i∈Λ φ

s0
σ′(i) =

∑
i∈Λ φ

s0
σ (i) = 1. Since t > 0, we

conclude that χσ(1)(pσ) 6= χσ(2)(pσ), completing the proof. �

6



Recently, Pyörälä [45] determined the dimension of orthogonal projections of planar diagonal

self-affine measures under an irrationality condition (see [10, 16, 21, 30, 44] for earlier results).

Building on this, we combine [45, Theorem 1.1] with Corollary 1.9 to obtain the dimension of

orthogonal projections for a class of overlapping self-affine sets.

Corollary 1.10. Let Φ be as in (1.3) with d = 2. Suppose |ri,1| 6= |ri,2| for some i ∈ Λ,

and Φ1,Φ2 are exponentially separated. Suppose further that there exist (i1, i2) ∈ Λ2 and

(j1, j2) ∈ {1, 2}2 such that log|ri1,j1 |/ log|ri2,j2 | /∈ Q. Then dimH π(KΦ) = min{1,dimA Φ} for

each orthogonal projection π onto a line not parallel to the coordinate axes. For the orthogonal

projection πj onto the j-th coordinate axis with j = 1, 2, dimH πj(KΦ) = min{1,dimA Φj}.

1.3. About the proof. Theorem 1.3 is reduced from Theorem 1.12 which concerns the di-

mension of a disintegration of the measure µ. This disintegration is defined as follows. For

any partition E of a set X, let E(x) denote the unique element of E containing x ∈ X. Given

u = u1 · · ·un ∈ Λn, define ϕu = ϕu1 ◦ · · · ◦ ϕun . Fix N ∈ N. Define the partition Γ of ΛN by

(1.13) Γ(x) = Γ(y) if and only if Aϕx|N = Aϕy|N for x, y ∈ ΛN,

where Aψ denotes the linear part of an affine map ψ, and x|N represents the first N digits

of x ∈ ΛN. Endow ΛN with the product topology, and let σ be the shift map defined by

σ((xk)
∞
k=1) = (xk+1)∞k=1. Set T = σN and A = ∨∞n=0T

−nΓ. Let {βAx }x∈ΛN be the disintegration

of the Bernoulli measure β := pN on ΛN with respect to A; see Section 2.4 for further details.

Define the quotient space Ω = ΛN/A ∼= {1, . . . , |Γ|}N, and endow it with the pushforward

measure P of β under the natural projection x 7→ A(x). For ω ∈ Ω, define βω = βAx whenever

ω = A(x) for some x ∈ ΛN. Then

(1.14) β =

∫
ΛN
βAx dβ(x) =

∫
Ω
βω dP(ω).

Let Π: ΛN → Rd be the coding map associated with Φ, defined by,

(1.15) Π(x) = lim
n→∞

ϕx1 ◦ · · · ◦ ϕxn(0) for x = (xn)∞n=1 ∈ ΛN.

It is well known that µ = Πβ. For ω ∈ Ω, define µω = Πβω. Applying Π to (1.14) yields the

desired disintegration:

(1.16) µ =

∫
Ω
µω dP(ω).

Recently, similar disintegration techniques have been widely applied to study various prop-

erties of self-conformal measures; see e.g. [1, 2, 24, 34, 51, 54]. Notably, Saglietti, Shmerkin

and Solomyak [51] established the typical absolute continuity of self-similar measures on the

line. From this, Corollary 1.8 and [53], it seems possible to show the typical absolute continuity

of diagonal self-affine measures, but we do not pursue this here. The idea of disintegrating

stationary measures into well-behaved random measures was introduced by Galicer, Saglietti,

Shmerkin and Yavicoli [24].

While many prior works are motivated by the infinite convolution structure of random mea-

sures, our primary goal is to construct minimal cut-sets Un of the finite words over Λ. These

cut-sets ensure that the cylinder sets {Π([u])}u∈Un have comparable diameters respectively along
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each coordinate. Such minimal cut-sets are naturally found in conformal settings (see [26, 48])

or under the specific assumptions on the linear parts of Φ (see [46]). However, achieving this in

general non-homogeneous affine settings is almost impossible. Consequently, the additional as-

sumption is crucial in [46]. Later in this subsection, we further illustrate how the disintegration

method underpins our approach.

As a starting point, we establish the exact dimensionality of µω for P-a.e. ω; see Theorem 3.2

for a detailed statement. Theorem 3.2 is a version of [19, Theorem 2.11] (see also [17, Theorem

1.4]) in the context of disintegrations.

Theorem 1.11. There exists dimA ≥ 0 such that for P-a.e. ω, µω is exact dimensional with

dimension given by dimA. Furthermore, dimA satisfies a Ledrappier-Young type formula (3.4).

It is well known [57] that for an exact dimensional measure θ, commonly used notions of

dimension coincide. In particular, dim θ = limn→∞
1
nH(θ,Dn), where Dn denotes the dyadic

partition of Rd. For the basics of entropy, please refer to Section 2.3. By (1.16) and the concavity

of entropy, we obtain

(1.17) dimµ = lim
n→∞

1

n
H

(∫
µω dP(ω),Dn

)
≥ lim

n→∞

∫
1

n
H(µω,Dn) dP(ω) = dimA.

We are now ready to state the main theorem regarding the dimension of µω. For 1 ≤ j ≤ d,

let πj denote the orthogonal projection from Rd to the j-th coordinate axis. For n ∈ N, let Cn
be the partition of ΛN such that Cn(x) = Cn(y) if and only if ϕx|n = ϕy|n for x, y ∈ ΛN. The

conditional entropy H(·, · | ·) is defined in (2.4).

Theorem 1.12. Suppose χ1 < · · · < χd, and Φj is Diophantine and for 1 ≤ j ≤ d. Suppose

further that for x, y ∈ ΛN, n ∈ N and 1 ≤ j ≤ d, πjϕx|n = πjϕy|n implies ϕx|n = ϕy|n. Then

dimA = min{d, fΦ (hRW (Φ,A))},

where fΦ (·) is as defined in (1.5), and

(1.18) hRW (Φ,A) = lim
n→∞

1

nN
H
(
β, CnN | Â

)
= inf

n

1

nN
H
(
β, CnN | Â

)
.

The limit exists by subadditivity (see (3.6)).

Reduction of Theorem 1.3 from Theorem 1.12. Since Φj is exponentially separated for 1 ≤ j ≤
d, the assumptions of the theorem are satisfied, and CnN = ∨nN−1

i=0 σ−iP, where P denotes the

partition of ΛN based on the first digit. Note that Â = (∨n−1
i=0 T

−iΓ̂)∨T−nÂ, and β is Bernoulli.

Then

H
(
β,∨nN−1

i=0 σ−iP | Â
)

= H
(
β,∨nN−1

i=0 σ−iP | ∨n−1
i=0 T

−iΓ
)

(by Lemma 2.1(vii))

= H
(
β,∨nN−1

i=0 σ−iP
)
−H

(
β,∨n−1

i=0 T
−iΓ
)

(by Lemma 2.1(v))

= (nN)H(p)−H
(
β,∨n−1

i=0 T
−iΓ
)
.

Since {Aϕi}i∈Λ are commutative, by (1.13) we have H
(
β,∨n−1

i=0 T
−iΓ
)
≤ n log |Γ| ≤ 2n|Λ| logN .

From this, (1.18) and the above equation it follows that

|hRW (Φ,A)−H(p)| ≤ 2|Λ| logN

N
.
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From this, (1.17), Theorem 1.12, and (1.4), letting N →∞ yields that

dimµ ≥ dimA = min {d, fΦ(hRW (Φ,A))} → min {d,dimL(Φ, p)} .

This completes the proof since dimµ ≤ min {d,dimL(Φ, p)} always holds. �

We prove Theorem 1.12 by following the approach of Rapaport [46]. The proof relies on

two key ingredients: a Ledrappier-Young type formula and an entropy increase result. For

the first ingredient, we establish a Ledrappier-Young type formula for certain disintegrations

of self-affine measures in Theorem 3.2, a result may be of independent interest. Based on an

argument inspired by ideas from [5], this formula reduces the general case to the one where the

entropy increase result can be applied.

The proof of the entropy increase result involves analyzing the multi-scale entropy of repeated

self-convolutions of a measure with nonnegligible entropy, as well as the component measures

of µ, along certain nonconformal partitions. In [46], the assumption that the linear parts of Φ

stay in a 1-dimensional subgroup is used to find minimal cut-sets Un, n ∈ N of Λ∗ such that

(1.19) Aϕu ≈ Aϕv for u, v ∈ Un,

where ≈ means being entrywise comparable. These cut-sets are essential for estimating the

asymptotic entropies of components of µ within the desired error (see [46, Section 4]). For each

µω, there are natural partitions Eωn , n ∈ N (see (4.4)). Motivated by this and (1.19), we consider

the random measures µω and establish the entropy increase result accordingly. However, diffi-

culties arise because µω is only dynamically self-affine (see (4.3)), and the partitions Eωn depend

on ω. To address this, we utilize the dynamics on (Ω,P) to prove appropriate modifications of

the required lemmas. Based these lemmas, it is not difficult to adapt the arguments in [46] to

derive Theorem 7.1, a version of the entropy increase result for random measures.

1.4. Structure of the article. In Section 2, we introduce the basics of the conditional en-

tropies and disintegrations. Section 3 is devoted to proving the Ledrappier-Young type formula

for random measures, thereby showing Theorem 1.11. In Section 4, we define the disintegra-

tions with respect to the linear parts of the IFS. Sections 5 and 6 are prepared for the entropy

increase result which itself is proved in Section 7. Finally, Theorem 1.12 is proved in Section 8.

1.5. Acknowledgement. I would like to thank Ariel Rapaport for suggesting the problem,

pointing out the useful references [46, 51], and providing helpful comments on an early version

of this paper.

2. Preliminaries

In this section, we introduce the necessary notations and setup, present the basics of condi-

tional information theory, and discuss key properties of specific disintegrations.
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2.1. Notations. Throughout this paper, the base of log(·) and exp(·) is 2. For n ∈ N, we define

[n] = {1, . . . , n}, with convention [0] = ∅. The normalized counting measure on [n] is denoted

by #n, that is, #n({k}) = 1/n for k ∈ [n]. For a finite set E , we use #E or |E| to represent its

cardinality. By E ( F we mean that E is a proper subset of F .

For a metric space X, let B(X) denote the Borel σ-algebra on X, and M(X) the set of all

Borel probability measures on X. By Mc(X) we denote the members of M(X) with compact

support. For θ ∈ M(X) and E ⊂ X, the restriction of θ to E is written as θ|E , and the

normalized restriction is θE = θ|E/θ(E) if θ(E) > 0.

Following [46, Section 2.1], we use the convenient notation �. Given R1, R2 ≥ 1, we write

R1 � R2 to indicate that R2 is large with respect to (w.r.t.) R1. Similarly, given ε1, ε2 ∈ (0, 1),

we write R1 � ε−1
1 , ε−1

2 � R2 and ε−1
1 � ε−1

2 to respectively indicate ε1 is small w.r.t. R1, R2

is large w.r.t. ε2, and ε2 is small w.r.t. ε1. The relation � is clearly transitive. For example,

the statement “Let m ≥ 1, ` ≥ L(m) ≥ 1, k ≥ K(m, `) ≥ 1 and ε ≤ ε0(m, `, k) be given.” is

equivalent to “Let ε ∈ (0, 1) and m, `, k ≥ 1 be with m� `� k � ε−1.”

2.2. The setup. We fix a diagonal affine IFS Φ = {ϕi(x) = Aix + ti}i∈Λ on Rd, where Ai =

diag(ri,1, . . . , ri,d) with ri,j ∈ (−1, 1) \ {0}, and ti = (ti,j)
d
j=1 ∈ Rd. The associated self-affine set

is KΦ. We fix a probability vector p = (pi)i∈Λ, and µ is the corresponding self-affine measure.

Let Π: ΛN → KΦ denote the coding map defined as in (1.15). It is well known that µ = Πβ,

where β := pN is the Bernoulli measure on ΛN. For 1 ≤ j ≤ d, the j-th Lyapunov exponent

is χj :=
∑

i∈Λ−pi log|ri,j |. As explained in Remark 1.4, we always assume χ1 < · · · < χd.

Without loss of generality, we also assume diam(KΦ) ≤ 1, where diam(·) denotes the diameter

in Euclidean metric.

For i ∈ Λ and j ∈ [d], define ϕi,j : R → R by ϕi,j(x) = ri,jx + ti,j . For ∅ 6= J ⊂ [d], the IFS

induced by Φ on RJ is defined as

(2.1) ΦJ = {ϕi,J}i∈Λ, where ϕi,J ((xj)j∈J) = (ϕi,j(xj))j∈J for i ∈ Λ.

For 1 ≤ j ≤ d, we write Φj in place of Φ[j]. It follows that Φ = Φ[d] and ϕi = ϕi,[d] for i ∈ Λ.

The collection of all finite words over Λ is denoted by Λ∗, including the empty word ∅. Write

|I| := n if I ∈ Λn and |∅| := 0. For x = (xi)
∞
i=1 ∈ ΛN and n ∈ N, let x|n = x1 · · ·xn and

x|0 = ∅. For I ∈ Λ∗, the cylinder set is [I] := {x ∈ ΛN : x||I| = I} . For I = i1 · · · in ∈ Λn and

1 ≤ j ≤ d, define

(2.2) ϕI = ϕi1 ◦ · · ·ϕin , AI = Ai1 · · ·Ain , AIj = ri1,j · · · rin,j ,

and

λIj :=
∣∣AIj ∣∣ and χIj := − log λIj .

Let {e1, . . . , ed} be the standard basis of Rd. For J ⊂ [d], let πJ denote the orthogonal projection

onto span{ej}j∈J , that is,

πJ(x) =
∑
j∈J
〈ej , x〉ej for x ∈ Rd,

where 〈·, ·〉 is the standard inner product on Rd. In particular, π∅ is the zero map and π[d] is

the identity map on Rd.
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2.3. Conditional expectation, information and entropy. Let (X,B, θ) be a probability

space. For a sub-σ-algebra F of B, the conditional expectation of an integrable function f given

F is denoted by E(θ, f | F). For a countable (B-measurable) partition ξ of X, the conditional

information of ξ given F is defined as

(2.3) I(θ, ξ | F) =
∑
A∈ξ
−1A log E(θ,1A | F) ,

where 1S denotes the indicator function of a set S. The conditional entropy of ξ given F is

(2.4) H(θ, ξ | F) :=

∫
I(θ, ξ | F) dθ =

∫ ∑
A∈ξ
−E(θ,1A | F) log E(θ,1A | F) dθ.

If F = N , the trivial σ-algebra consisting of sets of θ-measure 0 or 1, the above quantities

reduce to their unconditional counterparts:

I(θ, ξ) = I(θ, ξ | N ) and H(θ, ξ) = H(θ, ξ | N ) .

For S ⊂ B, let Ŝ denote the σ-algebra generated by S. Given a countable partition η, we write

(2.5) I(θ, ξ | η) = I(θ, ξ | η̂) and H(θ, ξ | η) = H(θ, ξ | η̂) .

In this case, the conditional entropy satisfies

H(θ, ξ | η) =
∑
A∈η

θ(A) ·H(θA, ξ) ,

where θA := θ(A)−1θ|A for A ∈ η with θ(A) > 0.

The following lemma summarizes key identities and properties of conditional information;

see [43, 56] for details. For countable partitions η1, . . . , ηn, let η1 ∨ · · · ∨ ηn = ∨ni=1ηi =

{∩ni=1Ai : Ai ∈ ηi, 1 ≤ i ≤ n}. For σ-algebras F1,F2, . . ., let F1 ∨ F2 ∨ · · · or ∨iFi denote the

σ-algebra generated by ∪iFi. Below we take the convention 0/0 = 0.

Lemma 2.1. Let T be a measurable map from a separable probability space (X,B, θ) to another

measurable space (Y,B′). Let A ∈ B. Let ξ, η, ζ be countable partitions of X, and let E be a

countable partition of Y , such that H(θ, ξ) , H(θ, η) , H(θ, ζ) , H(Tθ, E) < ∞. Let F ,F1,F2, . . .

be sub-σ-algebras of B, and let G be a sub-σ-algebra of B′. Then the following hold.

(i) E(Tθ, g | G) ◦ T = E
(
θ, g ◦ T | T−1G

)
for g ∈ L1(Y,B′, T θ).

(ii) I(Tθ, E | G) ◦ T = I
(
θ, T−1E | T−1G

)
.

(iii) H(Tθ, E | G) = H
(
θ, T−1E | T−1G

)
.

(iv) I(θ, ξ ∨ η | F) = I(θ, ξ | F) + I
(
θ, η | F ∨ ξ̂

)
.

(v) H(θ, ξ ∨ η | F) = H(θ, ξ | F) +H
(
θ, η | F ∨ ξ̂

)
.

(vi) If θ(A∩F1 ∩F2)/θ(F1 ∩F2) = θ(A∩F1)/θ(F1) for F1 ∈ F , F2 ∈ F2, then

E(θ,1A | F1 ∨ F2) = E(θ,1A | F1) .

(vii) If θ(A∩F1 ∩F2)/θ(F1 ∩F2) = θ(A∩F1)/θ(F1) for A ∈ ξ, F1 ∈ F , F2 ∈ F2, then

I(θ, ξ | F1 ∨ F2) = I(θ, ξ | F1) and H(θ, ξ | F1 ∨ F2) = H(θ, ξ | F1) .
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(viii) If Fn ⊂ Fn+1 for n ∈ N and Fn ↑ F , then supn I(θ, ξ | Fn) ∈ L1(θ), and I(θ, ξ,Fn)

converges θ a.e. and in L1(θ) to I(θ, ξ | F). In particular, limn→∞H(θ, ξ | Fn) =

H(θ, ξ | F).

Next, we present several useful inequalities for estimating conditional entropy. For partitions

ξ and η, we say η refines ξ, denoted by ξ ≺ η, if each member of η is a subset of some member

of ξ.

Lemma 2.2. Let (X,B) be a measurable space, and let θ, θ1, . . . , θn be probability measures on

(X,B). Let ξ, η be countable partitions of X, and let F1,F2 be sub-σ-algebras of B. Then the

following hold.

(i) H(θ, ξ) ≤ log #{A ∈ ξ : θ(A) > 0}.
(ii) If ξ ≺ η and F1 ⊂ F2, then H(θ, ξ | F2) ≤ H(θ, ξ | F1) ≤ H(θ, η | F1).

(iii) If q = (qi)
n
i=1 is a probability vector and θ =

∑n
i=1 qiθi, then

n∑
i=1

qiH(θi, ξ | η) ≤ H(θ, ξ | η) ≤
n∑
i=1

qiH(θi, ξ | η) +H(q).

(iv) Given C ≥ 1, we say that ξ and η are C-commensurable if for each A ∈ ξ and B ∈ η,

#{A′ ∈ ξ : A′ ∩B 6= ∅} ≤ C and #{B′ ∈ ξ : B′ ∩A 6= ∅} ≤ C.

If ξ and η are C-commensurable, then |H(θ, ξ)−H(θ, η)| ≤ logC.

2.4. Conditional measures and some disintegrations. We begin with a foundational result

from Rohlin’s theory of conditional measures; for further details, refer to [12, 50].

Theorem 2.3 (Rohlin [50]). Let X,Y be Euclidean spaces or product spaces of countably many

finite sets. Let η be a partition induced by a Borel measurable map π : X → Y , that is, η =

{π−1(y) : y ∈ Y }. Let θ be a Borel probability measure on X. Then for θ-a.e. x there exists

a probability measure θηx supported on η(x). These measures are uniquely determined up zero

θ-measure by the properties: if A ⊂ X is Borel measurable, then x 7→ θηx(A) is η̂-measurable,

and θ(A) =
∫
θηx(A) dθ(x). This means θ =

∫
θηx dθ(x) in the sense that

∫ ∫
f(y) dθηx(y)dθ(x)

for f ∈ L1(X,B(X), θ).

The family of measures {θηx}x∈X is called the system of conditional measures of θ associated

with η or the disintegration of θ with respect to π.

Next, we introduce certain disintegrations and present some of their properties. Fix N ∈ N.

Let Γ be a partition of ΛN such that for x, y ∈ ΛN, x|N = y|N implies Γ(x) = Γ(y). Set T = σN

and A = ∨∞i=0T
−iΓ. Define the quotient space Ω := ΛN/A ∼= ΓN. Let P be the Bernoulli

measure on Ω = ΓN with marginal (β(ω1))ω1∈Γ. Specifically, for ω1 · · ·ωn ∈ Γn, n ≥ 1,

(2.6) P([ω1 · · ·ωn]) =

n∏
k=1

β(ωk) = β
{
x ∈ ΛN : A(x) ∈ [ω1 · · ·ωn]

}
.

This shows that P = β ◦ A−1, that is, P is the pushforward of β under A. Here, we slightly

abuse the notation by using A(x) to denote both a set in ΛN and a sequence in Ω = ΓN.
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For ω1 ∈ Γ, define a measure pω1 on ΛN by pω1 := βω1 if β(ω1) > 0, and let pω1 be the

zero measure if β(ω1) = 0. For ω = (ωn)∞n=1 ∈ Ω, define a product measure βω on ΛN via the

identification ΛN = (ΛN )N as

(2.7) βω([I]) =
n∏
k=1

pωk([Ik]) for I = I1 · · · In ∈ (ΛN )n, n ≥ 1.

Then βω is supported on A(x) whenever ω = A(x) for some x ∈ ΛN. On the other hand,

let {βAx }x∈ΛN be the disintegration of β with respect to A. It follows from Theorem 2.3, Â =

(∨n−1
i=0 T

−iΓ̂) ∨ Â and Lemma 2.1(vi) that for β-a.e. x and I = I1 · · · In ∈ (ΛN )n, n ≥ 1,

βAx ([I]) = E
(
β,1[I] | Â

)
(x) = E

(
β,1[I] | ∨n−1

i=0 T
−iΓ
)

(x)

=
∑

A∈∨n−1
i=0 T

−iΓ

1A(x)
β([I]∩A)

β(A)

=
∑

(ωk)nk=1∈Γn

1[ω1···ωn](A(x))

n∏
k=1

pωk([Ik])

= βA(x)([I]),

where the last equality is by (2.7). Hence βAx = βA(x) for β-a.e. x. Combining this, Theorem 2.3

and P = β ◦ A−1, we obtain

(2.8) β =

∫
ΛN
βAx dβ(x) =

∫
ΛN
βA(x) dβ(x) =

∫
Ω
βω dP(ω).

Recall the coding map Π from (1.15). For ω ∈ Ω, define µω := Πβω. Applying Π to (2.8)

yields a disintegration of µ as

(2.9) µ =

∫
Ω
µω dP(ω).

For ω ∈ Ω, the random measure µω satisfies the dynamical self-affinity. By abuse of notation,

let T be the shift map on Ω, defined by T ((ωn)∞n=1) = (ωn+1)∞n=1. Using (2.7), we have, for

ω ∈ Ω,

(2.10) Tβω = βTω,

and so for u ∈ ΛN ,

(2.11) T (βω|[u]) = βω([u])βTω.

From (1.15) it follows that for u ∈ Λ∗,

(2.12) ϕu ◦Π ◦ σ|u| = Π on [u].
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Thus, µω satisfies the dynamical self-affinity:

(2.13)

µω = Πβω =
∑
u∈ΛN

Πβω|[u]

=
∑
u∈ΛN

(ϕuΠT )βω|[u] (by (2.12))

=
∑
u∈ΛN

(ϕuΠ)
(
βω([u])βTω

)
(by (2.11))

=
∑
u∈ΛN

βω([u]) · ϕuµTω. (by µTω = ΠβTω)

3. Exact dimensionality for disintegrations

In this section, we establish the exact dimensionality of certain random measures and show

that their dimension satisfies a Ledrappier-Young type formula. To prove these results, we

adapt the approach from deterministic case of Feng [17].

For J ⊂ [d], define the partition ξJ of ΛN as

(3.1) ξJ(x) = ξJ(y) if and only if πJΠ(x) = πJΠ(y) for x, y ∈ ΛN.

Note that ξ̂J = Π−1π−1
J B(Rd) (mod 0).

Theorem 3.1. Let N ∈ N. Let C be a partition of ΛN such that for x, y ∈ ΛN, C(x) = C(y)

implies ϕx|N = ϕy|N . Let Γ be a partition of ΛN such that for x, y ∈ ΛN, x|N = y|N implies

Γ(x) = Γ(y). Set T = σN and A = ∨∞i=0T
−iΓ. Let 1 ≤ j1 < · · · < js ≤ d and write

J = {j1, . . . , js}. For 0 ≤ b ≤ s, set Jb = {j1, . . . , jb}. Then for β-a.e. y, βAy -a.e. x and

0 ≤ k ≤ l ≤ s, the measure πJlΠβ
A,ξJk
y,x := πJlΠ(βAy )

ξJk
x is exact dimensional with

(3.2) dimπJlΠβ
A,ξJk
y,x =

l∑
b=k+1

HAJb−1
−HAJb

χjb
,

where for I ⊂ [d],

(3.3) HAI =
1

N
H
(
β, C | Â ∨ ξ̂I

)
.

Theorem 3.1 has following consequence which is a general and detailed version of Theo-

rem 1.11.

Theorem 3.2. For n ∈ N, let Cn be the partition of ΛN defined by Cn(x) = Cn(y) if and only

if ϕx|n = ϕy|n for x, y ∈ ΛN. Let N ∈ N. Let Γ be a partition of ΛN such that for x, y ∈ ΛN,

x|N = y|N implies Γ(x) = Γ(y). Set A = ∨∞i=0σ
−iNΓ. Let 1 ≤ j1 < · · · < js ≤ d and write

J = {j1, . . . , js}. For 0 ≤ b ≤ s, set Jb = {j1, . . . , jb}. Then for β-a.e. y, the measure πJΠβAy
is exact dimensional with dimension given by

(3.4) dimπJA =
s∑
b=1

hC,AJb−1
− hC,AJb
χjb

,

where for I ⊂ [d],

(3.5) hC,AI = lim
n→∞

1

nN
H
(
β, CnN | Â ∨ ξ̂I

)
= inf

n

1

nN
H
(
β, CnN | Â ∨ ξ̂I

)
,
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and hC,AJb−1
− hC,AJb ≤ χjb for 1 ≤ b ≤ s.

We write dimA := dimπ[d]A by convention.

Proof of Theorem 3.2 assuming Theorem 3.1. For n ∈ N write Γn = ∨n−1
i=0 σ

−iNΓ. Note that

A = ∨∞i=0σ
−i(nN)Γn for all n ∈ N. Applying Theorem 3.1 with nN, CnN ,Γn in place of N, C,Γ,

and taking k = 0, l = s, J = Js, it follows that for β-a.e. y, the measure πJΠβAy is exact

dimensional with

dimπJΠβAy =
s∑
b=1

HC,A,nJb−1
−HC,A,nJb

χjb
for all n ∈ N,

where for I ⊂ [d],

HC,A,nI =
1

nN
H
(
β, CnN | Â ∨ ξ̂I

)
.

For 1 ≤ b ≤ s, applying Theorem 3.1 with k = b− 1, l = b, we have

HC,A,nJb−1
−HC,A,nJb

≤ χjb ,

since πJbΠβ
A,ξJb−1
y,x is supported on Π(x) + πjbRd for β-a.e. y and βAy -a.e. x.

For m,n ∈ N, it follows from C(m+n)N ≺ CmN∨T−mCnN , Â =
(
∨m−1
i=0 T

−iΓ̂
)
∨T−mÂ, Lemmas

2.1, 2.2 and 3.5(i) that,

(3.6)

H
(
β, C(m+n)N | Â ∨ ξ̂I

)
≤ H

(
β, CmN ∨ T−mCnN | Â ∨ ξ̂I

)
= H

(
β, CmN | Â ∨ ξ̂I

)
+H

(
β, T−mCnN | Â ∨ ξ̂I ∨ ĈmN

)
= H

(
β, CmN | Â ∨ ξ̂I

)
+H

(
β, T−mCnN |

(
∨m−1
i=0 T

−iΓ̂
)
∨ T−mÂ ∨ T−mξ̂I ∨ ĈmN

)
≤ H

(
β, CmN | Â ∨ ξ̂I

)
+H

(
β, T−mCnN | T−m

(
Â ∨ ξ̂I

))
= H

(
β, CmN | Â ∨ ξ̂I

)
+H

(
β, CnN | Â ∨ ξ̂I

)
.

This shows the subadditivity and justifies the limit in (3.5). The proof is finished by letting

n→∞ in the above equations. �

The rest of this section is devoted to the proof of Theorem 3.1. For the remainder of this

section, we fix N, C,Γ, T,A as in Theorem 3.1. Without loss of generality, we assume J = [d],

since the general case can be reduced to this one by considering the IFS ΦJ as defined in (2.1).

3.1. The Peyrière measure. We begin by introducing a useful measure on Ω × ΛN. Recall

the definitions of Ω,P, βω, µω from Section 2.4. Define a Borel probability measure Q on Ω×ΛN

by

(3.7)

∫
Ω×ΛN

f(ω, x) dQ =

∫
Ω

∫
ΛN
f(ω, x) dβω(x)dP(ω),
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for every bounded Borel measurable function f on Ω × ΛN. Under this definition, the phrase

“for Q-a.e. (ω, x)” is equivalent to “for P-a.e. ω and βω-a.e. x”. The measure Q serves a role

analogous to the Peyrière measure used in [15]. Next, define a transformation on Ω× ΛN by

T (ω, x) := (Tω, Tx),

for (ω, x) ∈ Ω× ΛN.

Lemma 3.3. The system (Ω× ΛN,Q, T ) is measure-preserving and mixing.

Proof. For A ∈ B(Ω× ΛN),

Q(T−1A) =

∫
Ω

∫
ΛN

1A(Tω, Tx) dβω(x)dP(ω) (by (3.7))

=

∫
Ω

∫
ΛN

1A(Tω, x) dβTω(x)dP(ω) (by (2.10))

=

∫
Ω

∫
ΛN

1A(ω, x) dβω(x)dP(ω) (by TP = P)

= Q(A). (by (3.7))

Thus Q is T -invariant.

For U × I ∈ Γm1 × (ΛN )m1 , V × J ∈ Γm2 × (ΛN )m2 ,m1,m2 ≥ 1 and n ≥ 2Nm1, we have

Q
(
([U ]× [I])∩T−n([V ]× [J ])

)
= Q

(
([U ]∩T−n[V ])× ([I]∩T−n[J ])

)
=

∫
[U ]∩T−n[V ]

βω([I]∩T−n[J ]) dP(ω) (by (3.7))

=

∫
[U ]∩T−n[V ]

βω([I])βT
nω([J ]) dP(ω) (by (2.7) and (2.10))

=

∫
[U ]
βω([I]) dP(ω)

∫
[V ]
βω([J ]) dP(ω) (by (2.6))

= Q ([U ]× [I]) Q ([V ]× [J ]) . (by (3.7))

This implies that T is mixing with respect to Q. �

Below is a direct consequence of Birkhoff’s ergodic theorem applied to (Ω× ΛN,Q, T ).

Lemma 3.4. For Q-a.e. (ω, x) and 1 ≤ j ≤ d, limn→∞−(1/n) log λ
x|nN
j = Nχj.

3.2. Some measurable partitions. In this subsection we explore the properties of ξ[j],A and

their associated conditional measures.

For 0 ≤ j ≤ d, we denote ξj = ξ[j], Πj = π[j]Π, and for x ∈ ΛN, r > 0, define

BΠj (x, r) =
{
y ∈ ΛN : |Πj(x)−Πj(y)| ≤ r

}
= Π−1

j B (Πjx, r) .

For n ∈ N, let Cn−1
0 := ∨n−1

i=0 T
−iC.

We begin with a lemma connecting ξj , C and BΠj (x, r).

Lemma 3.5. For Q-a.e. (ω, x) and 1 ≤ i ≤ j ≤ d, the following holds.
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(i) ξj(x)∩C(x) = T−1ξj(Tx)∩C(x), and so ξj ∨ C = T−1ξj ∨ C.

(ii) ξj−1(x)∩BΠj

(
x, λ

x|nN
j

)
∩C(x) = T−1

(
ξj−1(Tx)∩BΠj

(
Tx, λ

Tx|(n−1)N
j

))
∩C(x).

(iii) For ε ∈ (0, 1) and n ∈ N with ε−1 � n, ξi−1(x)∩Cn−1
0 (x) ⊂ BΠj (x, exp(−n(Nχi − ε))).

Proof. By (1.15),

(3.8) ϕx|nN (Π(Tnx)) = Π(x) for x ∈ ΛN, n ∈ N.

For x ∈ ΛN, n ∈ N, a, b ∈ Rd and J ⊂ [d], since Aϕx|n is a diagonal matrix, we have

(3.9) πJ(ϕx|n(a)− ϕx|n(b)) = ϕx|n(πJa)− ϕx|n(πJb).

Then for y ∈ C(x), we have ϕx|N = ϕy|N , and so

y ∈ ξj(x) ⇐⇒ π[j]Π(x) = π[j]Π(y) (by (3.1))

⇐⇒ π[j]ϕx|N (Π(Tx)) = π[j]ϕy|N (Π(Ty)) (by (3.8))

⇐⇒ π[j]ϕx|N (Π(Tx)) = π[j]ϕx|N (Π(Ty)) (by ϕx|N = ϕy|N )

⇐⇒ ϕx|N
(
π[j]Π(Tx)

)
= ϕx|N

(
π[j]Π(Ty)

)
(by (3.9))

⇐⇒ π[j]Π(Tx) = π[j]Π(Ty) (by ϕx|N being invertible)

⇐⇒ y ∈ T−1ξj(Tx). (by (3.1))

This proves (i).

For y ∈ C(x), we have ϕx|N = ϕy|N , and so

y ∈ ξj−1(x)∩BΠj

(
x, λ

x|nN
j

)
⇐⇒

∣∣π[j]Π(x)− π[j]Π(y)
∣∣ ≤ λx|nNj , π[j−1]Π(x) = π[j−1]Π(y)

⇐⇒ |πjΠ(x)− πjΠ(y)| ≤ λx|nNj , π[j−1]Π(x) = π[j−1]Π(y) (by π[j] = π[j−1] + πj)

⇐⇒
∣∣πjϕx|N (Π(Tx))− πjϕx|N (Π(Ty))

∣∣ ≤ λx|nNj , (by (3.8) and ϕx|N = ϕy|N )

π[j−1]Π(Tx) = π[j−1]Π(Ty) (by (i))

⇐⇒ λ
x|N
j |πjΠ(Tx)− πjΠ(Ty)| ≤ λx|nNj , π[j−1]Π(Tx) = π[j−1]Π(Ty) (by (3.9))

⇐⇒ |πjΠ(Tx)− πjΠ(Ty)| ≤ λTx|(n−1)N
j , π[j−1]Π(Tx) = π[j−1]Π(Ty)

⇐⇒
∣∣π[j]Π(Tx)− π[j]Π(Ty)

∣∣ ≤ λTx|(n−1)N
j , π[j−1]Π(Tx) = π[j−1]Π(Ty)

⇐⇒ y ∈ T−1BΠj

(
Tx, λ

Tx|(n−1)N
j

)
∩T−1ξj−1(Tx).

This gives (ii).

Finally, we prove (iii). By Lemma 3.4 and χ` ≥ χi, we have for Q-a.e. (ω, x) and i ≤ ` ≤ j,

(3.10) λ
x|nN
` ≤ exp (−n(Nχ` − ε/4)) ≤ exp (−n(Nχi − ε/2)) .

Let y ∈ Cn−1
0 ∩ ξi−1(x). Then ϕy|nN = ϕx|nN and π[i−1]Π(x) = π[i−1]Π(y). Hence∣∣π[j]Π(x)− π[j]Π(y)

∣∣
=

∣∣∣∣∣
j∑
`=i

π`Π(x)− π`Π(y)

∣∣∣∣∣ (by π[i−1]Π(x) = π[i−1]Π(y))
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=

∣∣∣∣∣
j∑
`=i

π`
(
ϕx|nNΠ(Tnx)− ϕx|nNΠ(Tny)

)∣∣∣∣∣ (by (3.8) and ϕy|nN = ϕx|nN )

≤
j∑
`=i

λ
x|nN
` (by diam(KΦ) ≤ 1)

≤ exp (−n(Nχi − ε)) . (by (3.10))

This shows that y ∈ BΠj (x, exp(−n(Nχi − ε))). �

Next, we establish the relation between the conditional measures β
ω,ξj
x := (βω)

ξj
x and β

Tω,ξj
Tx .

Lemma 3.6. For Q-a.e. (ω, x), 1 ≤ j ≤ d and A ⊂ B(ΛN),

β
Tω,ξj
Tx (A) =

β
ω,ξj
x (T−1A∩C(x))

β
ω,ξj
x (C(x))

.

Proof. First we show that

(3.11)

β
ω,T−1ξj∨C
x (T−1A) = E

(
βω,1T−1A | T−1ξ̂j ∨ C

)
(x) (by Theorem 2.3)

= E
(
βω,1T−1A | T−1ξ̂j

)
(x) (by Lemma 2.1(vi))

= E
(
βTω,1A | ξ̂j

)
(Tx) (by Lemma 2.1(i) and (2.10))

= β
Tω,ξj
Tx (A). (by Theorem 2.3)

By Theorem 2.3, for β-a.e. x we define

νx(T−1A) =
β
ω,ξj
x (T−1A∩C(x))

β
ω,ξj
x (C(x))

=
∑
B∈C

1B(x) · hB(x),

where hB := E
(
βω,1T−1A∩B | ξ̂j

)
/E
(
βω,1B | ξ̂j

)
. Since hB is ξ̂j measurable, the function

x 7→ νx(T−1A) is ξ̂j ∨ Ĉ-measurable. Moreover,

(3.12)

∫
νx(T−1A) dβω =

∑
B∈C

∫
1BhB dβω

=
∑
B∈C

∫
E
(
βω,1BhB | ξ̂j

)
dβω

=
∑
B∈C

∫
E
(
βω,1B | ξ̂j

)
hB dβω (by hB being ξ̂j-measurable)

=
∑
B∈C

∫
E
(
βω,1T−1A∩B | ξ̂j

)
dβω (by the definition of hB)

=
∑
B∈C

βω(T−1A∩B) = βω(T−1A).

Hence, the uniqueness of conditional expectation implies that

νx(T−1A) = E
(
βω,1T−1A | ξ̂j ∨ Ĉ

)
= E

(
βω,1T−1A | T−1ξ̂j ∨ Ĉ

)
(by Lemma 3.5(i))
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= β
ω,T−1ξj∨C
x (T−1A). (by Theorem 2.3)

This together with (3.11) finishes the proof. �

Then we compute some useful integrals related to the conditional information and entropy.

Lemma 3.7. Let E be a finite partition of ΛN, and let F be a sub-σ-algebra of B(ΛN). Then

(3.13)

∫
Ω×ΛN

I(βω, E | F) (x) dQ(ω, x) = H
(
β, E | Â ∨ F

)
,

and

(3.14)

∫
Ω
H(βω, E | F) dP(ω) = H

(
β, E | Â ∨ F

)
.

Proof. Since (ΛN,B(ΛN), β) is a separable probability space, there exists a sequence of countable

partitions (Fn)∞n=1 of ΛN so that F̂n ↑ F . Note that for any sub-σ-algebra G of B(ΛN),∫
Ω×ΛN

I(βω, E | G) (x) dQ(ω, x)

=

∫
Ω
H(βω, E | G) dP(ω) (by (3.7))(3.15)

=

∫
ΛN
H
(
βAy , E | G

)
dβ(y) (by (2.8))(3.16)

=

∫
ΛN

∫
ΛN

I
(
βAy , E | G

)
(x) dβAy (x)dβ(y) (by (2.4))

=

∫
ΛN

∫
ΛN

I
(
βAx , E | G

)
(x) dβAy (x)dβ(y) (by βAx = βAy if x ∈ A(y))

=

∫
ΛN

I
(
βAx , E | G

)
(x) dβ(x). (by (2.8))(3.17)

Since (3.14) follows from (3.13) and (3.15), it suffices to prove (3.13).

For each E ∈ E , n ∈ N, β-a.e. x, by Theorem 2.3 we have

E
(
βAx ,1E | F̂n

)
(x) =

βAx (E ∩Fn(x))

βAx (Fn(x))
=
∑
F∈Fn

1F (x)hF (x),

where hF (x) = E
(
β,1E ∩F | Â

)
/E
(
β,1F | Â

)
. Then x 7→ E

(
βAx ,1E | F̂n

)
(x) is Â ∨ F̂n

measurable. This together with the computation in (3.12) shows that

(3.18) E
(
βAx ,1E | F̂n

)
(x) = E

(
β,1E | Â ∨ F̂n

)
(x).

Hence∫
Ω×ΛN

I(βω, E | F) (x) dQ(ω, x)

=

∫
ΛN
H
(
βAy , E | F

)
dβ(y) (by (3.16))

=

∫
ΛN

lim
n→∞

H
(
βAy , E | F̂n

)
dβ(y) (by Lemma 2.1(viii) and #E <∞)

= lim
n→∞

∫
ΛN
H
(
βAy , E | F̂n

)
dβ(y) (by #E <∞)
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= lim
n→∞

∫
ΛN

I
(
βAx , E | F̂n

)
(x) dβ(x) (by (3.17))

= lim
n→∞

H
(
β, E | Â ∨ F̂n

)
(by (3.18))

= H
(
β, E | Â ∨ F

)
, (by Lemma 2.1(viii) and #E <∞)

which finishes the proof. �

We finish this subsection with the a version of Shannon-McMillan-Breiman theorem.

Lemma 3.8. For Q-a.e. (ω, x) and 0 ≤ j ≤ d, limn→∞−(1/n) log β
ω,ξj
x (Cn−1

0 (x)) = NHA[j].

Proof. For n ∈ N, we have

I
(
βω,∨n−1

i=0 T
−iC | ξ̂j

)
(x)

= I
(
βω, C | ξ̂j

)
(x) + I

(
βω,∨n−1

i=1 T
−iC | ξ̂j ∨ Ĉ

)
(x) (by Lemma 2.1(iv))

= I
(
βω, C | ξ̂j

)
(x) + I

(
βω,∨n−1

i=1 T
−iC | T−1ξ̂j ∨ Ĉ

)
(x) (by Lemma 3.5(i))

= I
(
βω, C | ξ̂j

)
(x) + I

(
βω,∨n−1

i=1 T
−iC | T−1ξ̂j

)
(x) (by Lemma 2.1(vii))

= I
(
βω, C | ξ̂j

)
(x) + I

(
βTω,∨n−2

i=0 T
−iC | ξ̂j

)
(Tx). (by Lemma 2.1(ii) and (2.10))

Then an induction shows that

(3.19) I
(
βω,∨n−1

i=0 T
−iC | ξ̂j

)
(x) =

n−1∑
k=0

I
(
βT

kω, C | ξ̂j
)

(T kx).

On the other hand, it follows from Theorem 2.3 and (2.3) that for Q-a.e. (ω, x),

(3.20) − log β
ω,ξj
x (Cn−1

0 (x)) = I
(
βω,∨n−1

i=0 T
−iC | ξ̂j

)
(x).

By (3.19), (3.20) and (3.13), applying Birkhoff’s ergodic theorem finishes the proof. �

3.3. Transverse dimensions. The aim of this subsection is to prove Proposition 3.9, which

intuitively provides the local dimension of µω along each coordinate.

Proposition 3.9. For Q-a.e. (ω, x) and 1 ≤ j ≤ d,

lim
r→0

log β
ω,ξj−1
x (BΠj (x, r))

log r
=

HA[j−1] −HA[j]

χj
,

where HAI is defined in (3.3).

The proof of Proposition 3.9 is inspired by [17, Proposition 5.1]. The key idea is to reformulate

the measures of small balls in terms of certain variants of Birkhoff sums. The proof is then

completed by applying Birkhoff’s and the following Maker’s ergodic theorems [38].

Lemma 3.10 (Maker [38]). Let T be a measure-preserving transformation on a probability space

(X,B, θ). Let (gn)∞n=1 be a sequence of measurable functions converging θ-a.e. to g. Suppose

supn|gn| ≤ f for some f ∈ L1(X,B, θ). Then both θ-a.e. and in L1,

lim
n→∞

1

n

n−1∑
k=0

gn−k(T
kx) = E(θ, g | I) (x),
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where I = {B ∈ B, T−1B = B}.

The following lemma is a preparation for applying Lemma 3.10.

Lemma 3.11. For Q-a.e. (ω, x) and 1 ≤ j ≤ d,

(3.21) lim
r→0
− log

β
ω,ξj−1
x

(
BΠj (x, r)∩C(x)

)
β
ω,ξj−1
x

(
BΠj (x, r)

) = I
(
βω, C | ξ̂j

)
(x).

Furthermore, set

g(ω, x) = − inf
r>0

log
β
ω,ξj−1
x

(
BΠj (x, r)∩C(x)

)
β
ω,ξj−1
x

(
BΠj (x, r)

) .

Then g ≥ 0 and g ∈ L1(Ω× ΛN,Q).

Proof. Applying [17, Lemma 2.5(2)] with ΛN, π[j]Rd, π[j], β
ω, C, ξj−1 in place of X,Y, π,m, α, η

gives

lim
r→0
− log

β
ω,ξj−1
x

(
BΠj (x, r)∩C(x)

)
β
ω,ξj−1
x

(
BΠj (x, r)

) = I
(
βω, C | ξ̂j ∨ ξ̂j−1

)
(x).

This implies (3.21) since ξj−1 ≺ ξj . The last statement follows from the second part of [17,

Lemma 2.5(2)] and H(βω, C) ≤ N log|Λ| for all ω ∈ Ω. �

We are now ready to prove Proposition 3.9.

Proof of Proposition 3.9. The proof is adapted from [17, Proposition 5.1]. For clarity and to

account for the dependence on ω, we provide the details in full.

For n ∈ N, define

(3.22) Hn(ω, x) = log
β
ω,ξj−1
x

(
BΠj

(
x, λ

x|nN
j

))
β
Tω,ξj−1

Tx

(
BΠj

(
Tx, λ

Tx|(n−1)N
j

)) .
Then by telescoping and diam(suppµ) ≤ 1,

(3.23)

n−1∑
k=0

Hn−k(T
k(ω, x)) = log β

ω,ξj−1
x

(
BΠj

(
x, λ

x|nN
j

))
.

For n ∈ N, define

(3.24) Gn(ω, x) = log
β
ω,ξj−1
x

(
BΠj

(
x, λ

x|nN
j

)
∩C(x)

)
β
ω,ξj−1
x

(
BΠj

(
x, λ

x|nN
j

)) .

For 1 ≤ j ≤ d, write

(3.25) Qj(ω, x) = I
(
βω, C | ξ̂j

)
(x).

Then Lemma 3.11 implies that supn|Gn| ∈ L1(Q) and for Q-a.e. (ω, x),

lim
n→∞

Gn = −Qj .
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Thus for Q-a.e. (ω, x), combining Lemma 3.10 and Lemma 3.7 shows that

(3.26) lim
n→∞

1

n

n−1∑
k=0

Gn−k(T
k(ω, x)) = −

∫
Qj dQ = −NHA[j],

and by Birkhoff’s ergodic theorem,

(3.27) lim
n→∞

1

n

n−1∑
k=0

Qj−1(T k(ω, x)) = NHA[j−1].

Next, we show that for n ∈ N,

(3.28) Hn = −Qj−1 −Gn.

This is justified as follows,

Hn(ω, x) +Gn(ω, x)

= log
β
ω,ξj−1
x

(
BΠj (x, λ

x|nN
j )∩C(x)

)
β
Tω,ξj−1

Tx

(
BΠj (Tx, λ

Tx|(n−1)N
j )

) (by (3.22) and (3.24))

= log
β
ω,ξj−1
x

(
ξj−1(x)∩BΠj (x, λ

x|nN
j )∩C(x)

)
β
Tω,ξj−1

Tx

(
BΠj (Tx, λ

Tx|(n−1)N
j )

) (by β
ω,ξj−1
x (ξj−1(x)) = 1)

= log
β
ω,ξj−1
x

(
T−1

(
ξj−1(Tx)∩BΠ[j](Tx, λ

Tx|(n−1)N
j )

)
∩C(x)

)
β
Tω,ξj−1

Tx

(
BΠj (Tx, λ

Tx|(n−1)N
j )

) (by Lemma 3.5(ii))

= log
β
ω,ξj−1
x

(
T−1BΠj (Tx, λ

Tx|(n−1)N
j )∩T−1ξj−1(Tx)∩C(x)

)
β
Tω,ξj−1

Tx

(
BΠj (Tx, λ

Tx|(n−1)N
j )

) (by rearranging)

= log
β
ω,ξj−1
x

(
T−1BΠj (Tx, λ

Tx|(n−1)N
j )∩ ξj−1(x)∩C(x)

)
β
Tω,ξj−1

Tx

(
BΠj (Tx, λ

Tx|(n−1)N
j )

) (by Lemma 3.5(i))

= log
β
ω,ξj−1
x

(
T−1BΠj (Tx, λ

Tx|(n−1)N
j )∩C(x)

)
β
Tω,ξj−1

Tx

(
BΠj (Tx, λ

Tx|(n−1)N
j )

) (by β
ω,ξj−1
x (ξj−1(x)) = 1)

= log β
ω,ξj−1
x (C(x)) (by Lemma 3.6)

= −I
(
βω, C | ξ̂j−1

)
(x) (by Theorem 2.3 and (2.3))

= −Qj−1(ω, x). (by (3.25))

Finally, for Q-a.e. (ω, x), we have

lim
r→0

log β
ω,ξj−1
x

(
BΠj (x, r)

)
log r

= lim
n→∞

log β
ω,ξj−1
x

(
BΠj (x, λ

x|nN
j )

)
log λ

x|nN
j

(by Lemma 3.4)
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= lim
n→∞

∑n−1
k=0 Hn−k(T

k(ω, x))

log λ
x|nN
j

(by (3.23))

= lim
n→∞

∑n−1
k=0 Qj−1(T k(ω, x)) +

∑n
k=0Gn−k(T

k(ω, x))

− log λ
x|nN
j

(by (3.28))

= lim
n→∞

HA[j−1] −H
A
[j]

χj
. (by (3.26), (3.27) and Lemma 3.4)

This finishes the proof. �

3.4. Proof of Theorem 3.1. In this subsection, we prove Theorem 3.1 by adapting the argu-

ments in [17, Section 6], which is itself inspired by ideas from Ledrappier and Young [37].

For 1 ≤ i ≤ d, denote

(3.29) ϑi :=
HA[i−1] −HA[i]

χi
.

Using Proposition 3.9, it follows that for Q-a.e. (ω, x),

(3.30) ϑi = lim
r→0

log β
ω,ξi−1
x (BΠi(x, r))

log r
.

For Q-a.e. (ω, x) and 0 ≤ i ≤ j ≤ d, define

(3.31) γωi,j(x) = lim sup
r→0

log βω,ξix

(
BΠj (x, r)

)
log r

and γω
i,j

= lim inf
r→0

log βω,ξix

(
BΠj (x, r)

)
log r

.

We claim that the following three statements hold for Q-a.e. (ω, x):

γωj,j(x) = γω
j,j

(x) = 0(D1)

χi
(
γωi−1,j(x)− γωi,j(x)

)
≤ HA[i−1] −HA[i] for 1 ≤ i ≤ j.(D2)

γω
i,j

(x) + ϑi ≤ γωi−1,j
(x) for 1 ≤ i ≤ j.(D3)

Proof of Theorem 3.1 assuming (D1)–(D3). Combining (3.30), (D2) and (D3) shows that if

γωi,j(x) = γω
i,j

(x) = γωi,j(x) for some γωi,j(x) ∈ R, then

(3.32) γω
i−1,j

(x) ≤ γωi−1,j(x) ≤ γωi,j(x) + θi = γω
i,j

(x) + θi ≤ γωi−1,j
(x).

Thus γω
i−1,j

(x) = γωi−1,j(x) = γωi−1,j(x) for some γωi−1,j(x) ∈ R, and so

(3.33) γωi−1,j(x) = γωi,j(x) + ϑi.

By (D1), an induction from i = j shows that (3.32) and (3.33) hold for all 1 ≤ i ≤ j. Hence

(3.34) γωi,j(x) =

j∑
`=i+1

ϑ` =

j∑
`=i+1

HA[`−1] −HA[`]

χ`
for 0 ≤ i ≤ j.

Note that for Q-a.e. (ω, x) and r > 0,

βω,ξix

(
BΠj (x, r)

)
= (π[j]Πβ

ω,ξi
x )

(
B
(
π[j]Π(x), r

))
.
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This together with (3.31) and (3.34) shows that for Q-a.e. (ω, x) and 0 ≤ i ≤ j, the measure

π[j]Πβ
ω,ξi
x is exact dimensional with

(3.35) dimπ[j]Πβ
ω,ξi
x =

j∑
`=i+1

HA[`−1] −HA[`]

χ`
.

This proves Theorem 3.1 when J = [d]. For general J ⊂ [d], the proof is finished by considering

ΦJ instead. �

It remains to prove (D1)–(D3).

Proof of (D1). Since ξj(x) = Π−1
j (Πj(x)) ⊂ BΠj (x, r) for every x ∈ ΛN and r > 0, we have

1 ≥ βω,ξjx

(
BΠj (x, r)

)
≥ βω,ξjx (ξj(x)) = 1.

Thus γωj,j(x) = γω
j,j

(x) = 0 for Q-a.e. (ω, x). �

The proof of (D2) and (D3) relies on the next lemma showing that a set with positive measure

has positive density with respect to conditional measures almost surely.

Lemma 3.12. Let ω ∈ Ω and A ∈ B(ΛN) be with βω(A) > 0. Then for 0 ≤ i ≤ j ≤ d and

βω-a.e. x ∈ A,

lim
r→0

βω,ξix (A∩BΠj (x, r))

βω,ξix (BΠj (x, r))
> 0.

Proof. Applying [17, Lemma 2.5(1)] with ΛN, π[j]Rd, π[j], β
ω, C, ξi in place of X,Y, π,m, α, η

shows that for βω-a.e. x,

lim
r→0

βω,ξix (A∩BΠj (x, r))

βω,ξix (BΠj (x, r))
= E

(
βω,1A | ξ̂i ∨ ξ̂j

)
(x).

The proof is completed by an almost trivial property of conditional expectation that, for a

probability space (X,B, θ) and a sub-σ-algebra F of B, letting A ∈ B be with θ(A) > 0, we

have

E(θ,1A | F) (x) > 0 for θ-a.e. x ∈ A.

(See e.g. [19, Lemma 3.10] for a proof.) �

Now we are ready to prove (D2) and (D3).

Proof of (D2). For 0 ≤ i ≤ j, write hi := HA[i] for short. Suppose on the contrary that (D2) is

not true. There exists 1 ≤ i ≤ j and U ⊂ Ω× ΛN with Q(U) > 0 such that for (ω, x) ∈ U ,

(3.36)
hi−1 − hi

χi
< γωi−1,j(x)− γωi,j(x).

It follows from (3.36) and (3.31) that U is a subset of the following set,⋃
α∈Q∩(0,∞)

⋃
γi−1,γi∈Q

⋂
ε>0

{
(ω, x) :

hi−1 − hi
χi

< γi−1 − γi − α,

γωi−1,j(x) > γi−1 − ε/2, γωi,j(x) < γi + ε/2

}
.
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Then there exist α > 0 and real numbers γi−1, γi such that

(3.37)
hi−1 − hi

χi
< γi−1 − γi − α,

and for ε > 0 there exists Uε ⊂ U with Q(Uε) > 0 so that for x ∈ Uε,

(3.38) γωi−1,j(x) > γi−1 − ε/2, γωi,j(x) < γi + ε/2.

Fix ε ∈ (0, χi/3). There exists n0 : Uε → N such that for Q-a.e. (ω, x) ∈ Uε and n > n0(x),

(1) βω,ξix

(
BΠj (x, exp(−n(Nχi − 2ε)))

)
> exp (−n(Nχi − 2ε)(γi + ε)); (by (3.31))

(2) βω,ξix

(
Cn−1

0 (x)
)
< exp (−n(Nhi − ε)); (by Lemma 3.8)

(3) β
ω,ξi−1
x

(
Cn−1

0 (x)
)
> exp (−n(Nhi−1 + ε)); (by Lemma 3.8)

(4) ξi−1(x)∩Cn−1
0 (x) ⊂ BΠj (x, exp(−n(Nχi − 2ε))). (by Lemma 3.5(iii)).

Take N0 such that

∆ := {x ∈ Uε : n0(x) ≤ N0}

satisfies Q(∆) > 0. By (3.7) there exists Ω̃ ∈ Ω with P(Ω̃) > 0 such that for each ω ∈ Ω̃ there

exists Xω ⊂ ΛN satisfying {ω} ×Xω ⊂ ∆ and βω(Xω) > 0. Lemma 3.12 implies that for some

c > 0 and each ω ∈ Ω̃, there exists Y ω ⊂ Xω with βω(Y ω) > 0 such that for x ∈ Y ω there exists

n = n(ω, x) ≥ N0 satisfying,

(5) βω,ξix (L∩Xω) > cβω,ξix (L), where L = BΠj (x, exp(−n(Nχi − 2ε)));

(6) β
ω,ξi−1
x

(
BΠj (x, 2 exp(−n(Nχi − 2ε)))

)
< exp

(
−n(Nχi − 2ε)(γi−1 − ε)

)
; (by (3.31))

(7) log(1/c) < nε.

Take ω ∈ Ω̃ and x ∈ Y ω such that (1)–(7) are satisfied with n = n(ω, x). By (5) and (1),

βω,ξix (L∩Xω) ≥ cβω,ξix (L) ≥ c exp(−n(Nχiγi +O(ε))).

For each I ∈ Cn−1
0 with I ∩ ξi(x)∩L∩Xω 6= ∅, there is y ∈ Xω such that I = Cn−1

0 (y) and

ξi(y) = ξi(x). Thus, (2) implies

βω,ξix (I) = βω,ξiy

(
Cn−1

0 (y)
)
< exp(−n(Nhi − ε)).

Hence, by ξi(x) ⊂ ξi−1(x), combining the previous two equations gives

#

{
I ∈ Cn−1

0 : I ∩ ξi−1(x)∩L∩Xω 6= ∅
}

≥ #

{
I ∈ Cn−1

0 : I ∩ ξi(x)∩L∩Xω 6= ∅
}

≥ c exp (n(N(hi − χiγi)−O(ε))) .

On the other hand, for each I ∈ Cn−1
0 with I ∩ ξi−1(x)∩L∩Xω 6= ∅, there exists z ∈

I ∩ ξi−1(x)∩L∩Xω. Thus,

ξi−1(x)∩ I = ξi−1(z)∩Cn−1
0 (z)

⊂ BΠj (z, exp (−n(Nχi − 2ε))) (by (4))

⊂ BΠj (x, 2 exp (−n(Nχi − 2ε))) . (by z ∈ L)
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It follows from (3) that

β
ω,ξi−1
x (I) = β

ω,ξi−1
z

(
Cn−1

0 (z)
)
≥ exp(−n(Nhi−1 + ε)).

Hence

β
ω,ξi−1
x

(
BΠj (x, 2 exp(−n(Nχi − 2ε)))

)
≥ #

{
I ∈ Cn−1

0 : I ∩ ξi−1(x)∩L∩Xω 6= ∅
}

exp(−n(Nhi−1 + ε))

≥ exp (log c+ n (N(hi − hi−1 − χiγi)−O(ε))) .

From this, (6) and (7) it follows that

−Nχiγi−1 +O(ε) ≥ N(hi − hi−1 − χiγi)−O(ε).

Letting ε→ 0 and dividing by N give hi−1 − hi ≥ χi(γi−1 − γi), a contradiction to (3.37). �

Proof of (D3). Suppose on the contrary that (D3) is not true. Then there exists 1 ≤ i ≤ j and

U ⊂ Ω× ΛN with Q(U) > 0 such that for (ω, x) ∈ U ,

γω
i,j

(x) + ϑi > γω
i−1,j

(x).

Then there exist α > 0 and real numbers γ
i−1
, γ

i−1
such that

(3.39) γ
i
+ ϑi > γ

i−1
+ α,

and for every ε > 0, there exists Uε ⊂ U with Q(Uε) > 0 so that for (ω, x) ∈ Uε,

(3.40)
∣∣∣γω
i−1,j

(x)− γ
i−1

∣∣∣ < ε/2 and
∣∣∣γω
i,j

(x)− γ
i

∣∣∣ < ε/2.

Let 0 < ε < α/4. By Egorov’s theorem, there exists ∆ ⊂ Uε with Q(∆) > 0 and N0 ∈ N
such that for (ω, x) ∈ ∆ and n > N0,

(3.41) βω,ξix

(
BΠj (x, 2 exp(−n))

)
≤ exp

(
−n
(
γ
i
− ε
))

.

By (3.7), there exists Ω̃ ∈ Ω with P(Ω̃) > 0 so that for each ω ∈ Ω̃ there exists Xω ⊂ ΛN

satisfying {ω} ×Xω ⊂ ∆ and βω(Xω) > 0. Lemma 3.12 implies that for some c > 0 and each

ω ∈ Ω̃, there exists Y ω ⊂ Xω with βω(Y ω) > 0 such that for x ∈ Y ω there exists N1 ≥ N0 so

that for ω ∈ Ω̃, x ∈ Y ω and n ≥ N1,

(3.42) β
ω,ξi−1
x

(
Xω ∩BΠj (x, exp(−n))

)
> cβ

ω,ξi−1
x

(
BΠj (x, exp(−n))

)
.

Then

(3.43)

β
ω,ξi−1
x

(
BΠj (x, exp(−n))

)
≤ c−1β

ω,ξi−1
x

(
Xω ∩BΠj (x, exp(−n))

)
≤ c−1

∫
ΛN
βω,ξiy

(
Xω ∩BΠj (x, exp(−n))

)
dβ

ω,ξi−1
x (y) (by ξi−1 ≺ ξi)

≤ c−1

∫
BΠi(x,exp(−n))

βω,ξiy

(
Xω ∩BΠj (x, exp(−n))

)
dβ

ω,ξi−1
x (y),
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where the last inequality holds since combining y ∈ ξi−1(x) and ξi(y)∩Xω ∩BΠj (x, exp(−n)) 6=
∅ implies y ∈ BΠi(x, exp(−n)). To see that, take z ∈ ξi(y)∩Xω ∩BΠj (x, exp(−n)). Since

Πi(z) = Πi(y) and π[i]Πj = Πi by i ≤ j, we have

‖Πi(y)−Πi(x)‖ = ‖Πi(z))−Πi(x)‖ ≤ ‖Πj(z)−Πj(x)‖ ≤ exp(−n),

which implies y ∈ BΠi(x, exp(−n)). Moreover, it follows from z ∈ BΠj (x, exp(−n)) that

BΠj (x, exp(−n)) ⊂ BΠj (z, 2 exp(−n)) .

Hence,

βω,ξiy

(
Xω ∩BΠj (x, exp(−n))

)
= βω,ξiz

(
Xω ∩BΠj (x, exp(−n))

)
(by ξi(z) = ξi(y))

≤ βω,ξiz

(
BΠj (z, 2 exp(−n))

)
≤ exp

(
−n(γ

i
− ε)

)
. (by (3.41) and z ∈ Xω)

Combining this with (3.43) shows that for ω ∈ Ω̃ and x ∈ Y ω,

β
ω,ξi−1
x

(
BΠj (x, exp(−n))

)
≤ exp

(
− log c− n(γ

i
− ε)

)
β
ω,ξi−1
x

(
BΠi(x, exp(−n))

)
.

By taking logarithm, dividing by n and letting n→∞, we have γω
i−1,j

(x) ≥ γ
i
− ε+ ϑi. Then

applying (3.40) shows

γ
i−1
≥ γ

i
+ ϑi − 2ε.

Letting ε→ 0 gives γ
i−1
≥ γ

i
+ ϑi, a contradiction to (3.39). �

4. The disintegrations with respect to linear parts

In this and all the subsequent sections, we fix N ∈ N and let Γ be a partition of ΛN so that for

x, y ∈ ΛN, x|N = y|N implies Γ(x) = Γ(y), which in turn implies Aϕx|N = Aϕy|N . Specifically,

(4.1) L ≺ Γ ≺ {[I] : I ∈ ΛN},

where L is the partition of ΛN defined by L(x) = L(y) if and only if Aϕx|N = Aϕy|N for x, y ∈ ΛN.

We set T = σN and A = ∨∞i=0T
−iΓ. Recall the definitions of Ω,P, βω, µω from Section 2.4. In

this section we introduce some properties of A and the associated random measures.

We begin with some notations. For ω ∈ Ω, where ω = A(x) with x ∈ ΛN, and n ≥ 0, define

Aω|n := Aϕx|nN
and A−ω|n := (Aω|n)−1.

This is well defined since, by (4.1), it is independent of the choice of x. For 1 ≤ j ≤ d, let the

j-th entry on the diagonal of Aω|n be denoted by A
ω|n
j . Define

λ
ω|n
j :=

∣∣∣Aω|nj ∣∣∣ and χ
ω|n
j := − log λ

ω|n
j .

Let rmin := min{|ri,j | : 1 ≤ i, j ≤ d} and rmax := max{|ri,j | : 1 ≤ i, j ≤ d}. Then

(4.2) rNnmin ≤ λ
ω|n
j ≤ rNnmax for 1 ≤ j ≤ d.

The following lemma is a direct consequence of Lemma 3.4, (3.7) and Egorov’s theorem.

Lemma 4.1. For η ∈ (0, 1) there exists Ω ⊂ Ω with P(Ω) > 1− η so that for ω ∈ Ω and n ∈ N
with η−1 � n, we have

∣∣∣χω|nj − nNχj
∣∣∣ < nη for 1 ≤ j ≤ d.
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The random measure µω exhibits a convolution structure. For ω ∈ Ω and n ≥ 0, define

νωn =
∑

u∈ΛnN

βω([u])δϕu(0).

Since Aϕu = Aω|n for u ∈ ΛnN with βω([u]) 6= 0, it follows from (2.13) that

(4.3) µω = νωn ∗Aω|nµT
nω,

where Aθ denotes the pushforward of a measure θ by a matrix A.

4.1. Nonconformal partition. Fix ω ∈ Ω. Following [46], we define the nonconformal par-

titions used to analyze the entropy growth of µω. For n ∈ Z, let Ddn be the n-th level dyadic

partition of Rd, that is,

Ddn =

{
k

2n
+

[
0,

1

2n

)d
: k ∈ Zd

}
.

For t ∈ R, define Ddt = Ddbtc. We omit the superscript d when the ambient space is clear from

the context. For ω ∈ Ω and n ≥ 0, define

(4.4) Eωn := Aω|nDd0 = {Aω|nD : D ∈ Dd0} =
d

×
j=1

λ
ω|n
j D

1
0.

It follows that

(4.5) Aω|bπ−1
J E

T bω
n = π−1

J E
ω
n+b for b ≥ 0 and J ⊂ [d],

and

(4.6) Eωn and
d

×
j=1

D1

χ
ω|n
j

are O(1)-commensurable.

For y ∈ Rd, we define the translation map Ty(x) = x+ y, x ∈ Rd. It is readily checked that

(4.7) πJEωn and T−1
y π−1

J E
ω
n are O(1)-commensurable for J ⊂ [d] and y ∈ Rd.

Next, suppose f, g are two maps from a set X to Rd such that for some C > 1,

|πj(f(x)− g(x))| ≤ Cλω|nj for 1 ≤ j ≤ d and x ∈ X.

Then

(4.8) f−1π−1
J E

ω
n and g−1π−1

J E
ω
n are O

(
Cd
)

-commensurable for J ⊂ [d].

Combining (4.3), Lemma 2.2(iii) and (4.7), we obtain the following inequality for m,n ≥ 0,

(4.9) H
(
µω, Eωm+n | Eωn

)
≥ H

(
µT

nω, ETnω
m

)
−O(1) .

This estimate is the major advantage of considering µω and Eωn .
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4.2. Component measure. Fix ω ∈ Ω. We introduce the component measures along Eωn .

Given θ ∈ M(Rd) and n ≥ 0, let θωx,n be a measure-valued random element such that θωx,n =

θEωn (x) with probability θ(En(x)) for x ∈ Rd. Thus, for a event U ⊂M(Rd),

P
{
θωx,n ∈ U

}
= θ

{
x ∈ Rd : θEωn (x) ∈ U

}
.

We call θωx,n an n-th level component of θ given ω ∈ Ω and x ∈ Rd. For x ∈ Rd with θ(Eωn (x)) > 0,

we write θωx,n in place of θEωn (x) even when no randomness is involved. Thus, for n ≥ 0,

(4.10) θ =

∫
θωx,n dθ(x).

We can also choose a random scale n uniformly from a range. For example, for a finite set

I ⊂ N, define

Pi∈I
{
θωx,i ∈ U

}
:=

1

|I|
∑
i∈I

P
{
θωx,i ∈ U

}
.

Let E and Ei∈I denote the corresponding expectation with respect to P and Pi∈I . Thus, for

each bounded measurable function f : M(Rd)→ R and n ≥ 0,

Ei=n
(
f(θωx,i)

)
=

∫
f(θEωn (x)) dθ(x).

In particular, for k, n ≥ 0,

(4.11) H
(
θ, Eωn+k | Eωn

)
= Ei=n

(
H
(
θωx,i, Eωn+k

))
.

We finish this section with the a useful lemma relating the entropies of a measure and its

components. The proof is almost identical to [26, Lemma 3.4] and is therefore omitted.

Lemma 4.2. Let θ ∈Mc(Rd) with diam(supp θ) ≤ R for some R ≥ 1. Then for all ω ∈ Ω and

every 1 ≤ m ≤ n,

1

n
H(θ, Eωn ) = E1≤q≤n

(
1

m
H
(
θωx,q, Eωq+m

))
+O

(
m+ logR

n

)
= E1≤q≤n

(
1

m
H
(
θ, Eωq+m | Eωq

))
+O

(
m+ logR

n

)
.

5. Entropy of repeated self-convolutions

This section is devoted to proving the following proposition, which is analogous to [46, Propo-

sition 1.15] for the random measures. It plays a crucial role in establishing the entropy increase

result. The proof is adapted from [46]. To account for the dependence on ω and other additional

parameters, based on the dynamics on (Ω,P) we adapt the arguments to prove the modified

version of the statements. For clarity, we provide the necessary details.

Proposition 5.1. For ε ∈ (0, 1), there is δ > 0 so that the following holds. Let η ∈ (0, 1) and

m1, . . . ,md, k1, . . . , kd ∈ N be with ε−1 � η−1 � md � kd � md−1 � · · · � k2 � m1 � k1.

There exists Ω ⊂ Ω with P(Ω) ≥ 1− η so that for n ∈ N with k1 � n and ω ∈ Ω the following

holds. Let θ ∈ Mc(Rd) with diam(supp θ) ≤ ε−1 and 1
nH(θ, Eωn ) > ε. Then there exist j ∈ [d]

and Qω ⊂ [n] with #n(Qω) ≥ δ so that

(5.1)
1

mj
H
(
θ∗kj , Eωq+mj

| Eωq ∨ π−1
[d]\{j}E

ω
q+mj

)
> Nχj − ε for q ∈ Qω.
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5.1. Entropy of self-convolutions under a condition on variance. The purpose of this

subsection is to prove the following lemma, which is analogous to [46, Lemma 3.2].

Lemma 5.2. Let η ∈ (0, 1) and m, `, k ∈ N be with η−1 � m� `� k. There exists Ω ⊂ Ω with

P(Ω) > 1−η so that, for n ∈ N with k � n and ω ∈ Ω, there is Bω ⊂ [n] with #n(Bω) > 1−η so

that the following holds. Let θ1, . . . , θk ∈Mc(Rd) be with diam(supp θi) ≤ η−1 for 1 ≤ i ≤ k. Set

ρ := θ1 ∗ · · ·∗θk. Suppose that there exists 1 ≤ j ≤ d so that Var(πjρ) ≥ ηk and Var(πj′ρ) ≤ η−1

for 1 ≤ j′ < j. Then setting a := blog k/(2Nχj)c, we have for ω ∈ Ω,

1

m
H
(
ρ, ET bω

`−a+m | ET
bω

`−a ∨ π−1
[d]\{j}E

T bω
`−a+m

)
> Nχj − η for b ∈ Bω.

Proof. The proof is adapted from [46, Lemma 3.2]. To account for the dependence on additional

parameters, we include the details for clarity. For 1 ≤ j ≤ d, the coordinate map from Rd to

R is denoted as π̃j(x) = 〈x, ej〉 for x ∈ Rd. After a translation of ρ, by Lemma 2.1(iv) we can

assume that the mean 〈π̃jρ〉 = 0 for 1 ≤ j′ ≤ d and supp θi ⊂ [−η, η]d for 1 ≤ i ≤ k.

Let ε ∈ (0, 1) be with η−1 � ε−1 � m. By Lemma 4.1 and the T -invariance of P, there

exists Ω ⊂ Ω with P(Ω) > 1− ε/2 so that for ω ∈ Ω and 1 ≤ j′ ≤ d,

(5.2)

∣∣∣∣∣∣ χ
ω|a
j′

log k
−
χj′

2χj

∣∣∣∣∣∣ < ε,
∣∣∣χω|(`+m)
j′ − (`+m)Nχj′

∣∣∣ < ε,

and

(5.3)
∣∣∣χT `ω|m
j −mNχj

∣∣∣ < mε.

In what follows we take ω ∈ Ω.

We first show that

(5.4)
1

m
H
(
πjA

ω|aρ, Eω`+m | Cω
)
≥ Nχj −

η

4
,

where Cω := Eω` ∨ π
−1
[d]\{j}E

ω
`+m. The proof of (5.4) is based on the Berry-Essen theorem. Next,

we estimate the moments of corresponding measures. For 1 ≤ i ≤ k and s = 2, 3, it follows

from (5.2) that

(5.5)

∫
|t|s dπ̃jA

ω|aθi(t) = exp
(
−sχω|aj

)∫
|t|s dπ̃jθi(t) = O

(
η−sk−s/2+sε

)
.

Thus, the variance satisfies

Var(π̃jA
ω|aρ) =

k∑
i=1

Var(π̃jA
ω|aθi) = O

(
η−2k2ε

)
.

Moreover,

Var(π̃jA
ω|aρ) = exp

(
−2χ

ω|a
j

)
Var(π̃jρ) ≥ ηk−2ε.

Hence ∑k
i=1

∫
|t|3 dπ̃jA

ω|aθi(t)

Var(π̃jAω|aρ)3/2
= O

(
η−9/2k−1/2+6ε

)
.
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Combining all above with ε−1 � m � ` and [46, Theorem 3.1 and Lemma 3.3], we conclude

from Lemma 2.2(iv) and (5.3) that

1

mNχj
H

(
π̃jA

ω|aρ,D1

χ
ω|`
j +χ

T`ω|m
j

| D1

χ
ω|`
j

)
≥ 1

mNχj
H

(
π̃jA

ω|aρ,D1

χ
ω|`
j +mNχj

| D1

χ
ω|`
j

)
−O(ε)

≥ 1− ε−O(ε) ≥ 1−O(ε) .

By (4.6) and η−1 � ε−1, this proves (5.4).

We proceed to estimate the error caused by πj in (5.4). For j′ ∈ [d] \ {j}, set

Sj′ :=
{
x ∈ Rd :

∣∣∣πj′Aω|ax∣∣∣ ≤ exp (−2Nχd(`+m))
}
,

and define S := ∩j′∈[d]\{j} Sj′ . For x ∈ S,∣∣∣Aω|ax− πjAω|ax∣∣∣ = O(exp (−2Nχd(`+m))) .

Hence by (5.2) and (4.8),

(5.6) H
(
Aω|aρS , Eω`+m | Cω

)
= H

(
πjA

ω|aρS , Eω`+m | Cω
)

+O(1).

For j < j′ ≤ d, it follows from (5.2) that

Var(π̃j′A
ω|aρ) = exp

(
−2χ

ω|a
j′

) k∑
i=1

Var(π̃j′θi) = O
(
η−2k1−χj′/χj+2ε

)
.

For 1 ≤ j′ < j, it follows from Var(πj′ρ) ≤ η−1 and (5.2) that

Var(π̃j′A
ω|aρ) ≤ η−1 exp

(
−2χ

ω|a
j′

)
= O

(
η−1k−χj′/χj+2ε

)
.

Recall that χ1 < · · · < χd. By η−1 � ε−1, there is δ > 0 only depending on χ1, . . . , χd so that

Var(π̃j′A
ω|aρ) = O(η−2k−δ) for j′ ∈ [d] \ {j}.

From this, since the mean 〈π̃j′ρ〉 = 0 for j′ ∈ [d], and by Chebyshev’s inequality,

(5.7)

ρ(Sc) ≤
∑

j′∈[d]\{j}

ρ(Scj′) ≤
∑

j′∈[d]\{j}

exp (4Nχd(`+m)) Var(π̃j′A
ω|aρ)

= O
(

exp (4Nχd(`+m)) η−2k−δ
)
.

By suppπjA
ω|aρ ⊂ [−kη−1, kη−1]d and (5.2),

H
(
πjA

ω|aρSc , Eω`+m
)

= O(`+m+ log(kη−1)).

From the above two equations, it follows from η−1 � m� `� k that

(5.8)
ρ(Sc)

m
H
(
πjA

ω|aρSc , Eω`+m | Cω
)
≤ η

4
.

Hence

1

m
H
(
Aω|aρ, Eω`+m | Cω

)
≥ ρ(S)

m
H
(
Aω|aρS , Eω`+m | Cω

)
(by Lemma 2.2(iii))
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≥ ρ(S)

m
H
(
πjA

ω|aρS , Eω`+m | Cω
)
−O

(
1

m

)
(by (5.6))

≥ ρ(S)

m
H
(
πjA

ω|aρS , Eω`+m | Cω
)
− η

4
(by η−1 � m)

+
ρ(Sc)

m
H
(
πjA

ω|aρSc , Eω`+m | Cω
)
− η

4
(by (5.8))

≥ 1

m
H
(
πjA

ω|aρ, Eω`+m | Cω
)
− 3

4
η (by Lemma 2.2(iii) and (5.7))

≥ Nχj − η. (by (5.4))

By (4.4) and (4.5), this implies that

1

m
H
(
ρ, ETaω

`−a+m | ET
aω

`−a ∨ π−1
[d]\{j}E

Taω
`−a+m

)
≥ Nχj − η.

Since P(Ω) > 1 − ε/2 > 1 − η/2 and a = O(log k) � n, the proof is finished by applying

Birkhoff’s ergodic theorem and Egorov’s theorem to 1Ω. �

5.2. Positive entropy implies nonnegligible variance. Based on Chebyshev’s inequality

and (4.2), the proof of the next lemma is almost identical to [26, Lemma 4.4] and so omitted.

Lemma 5.3. Let ε, δ ∈ (0, 1) and m ∈ N be with ε−1 � m � δ−1. Let θ ∈ Mc(Rd) such that

diam(supp θ) ≤ ε−1 and Var(πjθ) ≤ δ for each 1 ≤ j ≤ d. Then 1
mH(θ, Eωm) < ε for ω ∈ Ω.

The following lemma is analogous to [46, Lemma 3.5], providing a nonnegligible proportion

of components with positive variance based on the assumption of positive entropy. The proof

is nearly identical to that of [46, Lemma 3.5], based on Lemma 5.3, and is therefore omitted.

Lemma 5.4. For ε ∈ (0, 1) there exists δ > 0 so that the following holds. Let n ∈ N be with

ε−1 � n. Let ω ∈ Ω and θ ∈ Mc(Rd) be with diam(supp θ) ≤ ε−1 and 1
nH(θ, Eωn ) > ε. Then

there exists Bω ⊂ [n] with #n(Bω) ≥ δ so that

Pi=b
{

Var(πjA
−ω|iθωx,i) > δ for some 1 ≤ j ≤ d

}
≥ δ for b ∈ Bω.

5.3. Proof of Proposition 5.1. Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. The proof is adapted from [46, Proposition 1.15], with Lemmas 5.2

and 5.4 in roles of [46, Lemmas 3.2 and 3.5], respectively. To account for the dependence on

additional parameters and for clarity, we include the necessary details.

Let δ ∈ (0, 1) and `1, . . . , `d ∈ N be with

(5.9) ε−1 � δ−1 � η−1 � md � `d � kd � md−1 � · · · � k2 � m1 � `1 � k1 � n.

Define k̃j = bδkj/(2d)c for 1 ≤ j ≤ d. By `j � kj and δ−1 � kj , we have `j � k̃j . Let ηd := η

and ηj := k−1
j+1 for 1 ≤ j < d. Then ηj ≤ η and η−1

j � mj � `j � k̃j � n for 1 ≤ j ≤ d.

Let Ω be the intersection of the Ω’s obtained by applying Lemma 5.2 repeatedly with

ηj ,mj , `j , kj in place of η,m, `, k for 1 ≤ j ≤ d. Note that kj � n for 1 ≤ j ≤ d. For

ω ∈ Ω, let Bω be the intersection of corresponding Bω’s obtained by applying Lemma 5.2 with

n in place of n. Then P(Ω) > 1 − dη and for ω ∈ Ω, #n(Bω) > 1 − dη. In what follows we
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take ω ∈ Ω, and let Bω ⊂ [n] accordingly. By Lemma 5.4 and ε−1 � δ−1 � η−1, there exists

B
ω ⊂ Bω with #n(B

ω
) > δ − dη > δ/2 so that for b ∈ Bω

,

Pi=b
{

Var(πjA
−ω|bθωx,i) > δ for some 1 ≤ j ≤ d

}
> δ.

For 1 ≤ j ≤ d, let Bω
j be the set of all b ∈ Bω

so that

Pi=b
{

Var(πjA
−ω|iθωx,i) > ηj and Var(πj′A

−ω|iθωx,i) ≤ ηj′ for 1 ≤ j′ < j
}
> δ/d.

It is clear that B
ω ⊂ ∪dj=1B

ω
j . Since #n(B

ω
) > δ/2, it follows that #n(Bω

j ) > δ/(2d) for some

1 ≤ j ≤ d. Fix such j until the end of the proof.

Note that

ε−1 � δ−1 � η−1
j � mj � `j � kj � n and ηj′ ≤ k−1

j for 1 ≤ j′ < j.

Let b ∈ Bω
j be given, and define

Y := {x ∈ Rd : Var(πjA
−ω|bθωx,b) > ηj and Var(πj′A

−ω|bθωx,b) ≤ ηj′ for 1 ≤ j′ < j}.

Recall k̃j = bδkj/(2d)c, and write k = k̃j for short. Set

Z :=
{

(x1, . . . , xkj ) ∈ (Rd)kj : #{1 ≤ s ≤ kj : xs ∈ Y } ≥ k
}
.

Since θ(Y ) > δ/d and δ−1 � kj , the weak law of large numbers implies θ×kj (Z) > 1− δ.

Let (x1, . . . , xkj ) ∈ Z be given. Then there exist integers 1 ≤ s1 < · · · < sk ≤ kj so that

xsi ∈ Y for 1 ≤ i ≤ k. Note that

diam
(

suppA−ω|bθωxsi,b

)
= O(1) for 1 ≤ i ≤ k.

Set

ρ := A−ω|bθωxs1 ,b
∗ · · · ∗A−ω|bθωxsk ,b.

We have

Var(πjρ) =
k∑
i=1

Var(πjA
−ω|bθωxsi ,b

) ≥ kηj ,

and for each 1 ≤ j′ < j, recalling k = k̃j = bδkj/(2d)c,

Var(πj′ρ) =

k∑
i=1

Var(πj′A
−ω|bθωxsi ,b

) ≤ kηj′ = O
(
δkjηj′

)
≤ 1.

Recall the definition of Bω and Bω
j . Set a := blog k/(2Nχj)c. It follows from Lemma 5.2 that

(5.10)
1

mj
H
(
ρ, ET bω

`j−a+mj
| ET bω

`j−a ∨ π
−1
[d]\{j}E

T bω
`j−a+mj

)
> Nχj − δ for b ∈ Bω

j .

For s ∈ Z and b ≥ 0, write CT bω
s := ET bω

s+`j−a∨π
−1
[d]\{j}E

T bω
s+`j−a+mj

for short. Since (5.10), k ≤ kj
and δ−1 � mj , we conclude from (4.7) and the concavity of entropy that for b ∈ Bω

j ,

1

mj
H
(
∗kjs=1A

−ω|bθωxs,b, E
T bω
`j−a+mj

| CT bω
0

)
> Nχj − 2δ.

Then by (4.5),

(5.11)
1

mj
H
(
∗kjs=1θ

ω
xs,b, E

ω
b+`j−a+mj

| Cωb
)
> Nχj − 3δ.
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Note that by (4.10),

θ∗kj =

∫
∗kjs=1θ

ω
xs,b dθ×kj (x1, . . . , xkj ).

From this, concavity of entropy, (5.11) and θ×kj (Z) > 1− δ, it follows that for b ∈ Bω
j ,

(5.12)

1

mj
H
(
θ∗kj , Eωb+`j−a+mj

| Eωb+`j−a ∨ π
−1
[d]\{j}E

ω
b+`j−a+mj

)
≥∫

Z

1

mj
H
(
∗kjs=1θ

ω
xs,b, E

ω
b+`j−a+mj

| Cωb
)

dθ×kj (x1, . . . , xkj ) ≥ Nχj −O(δ).

Finally, define Qω :=
{
q ∈ [n] : q − `j + a ∈ Bω

j

}
. From `j , a, δ

−1 � n and #n(Bω
j ) > δ/(2d),

it follows that #n(Qω) > δ/(3d). The proof is finished by ε−1 � δ−1 and (5.12). �

6. Entropy of component measures

In this section, we prove three lemmas about the entropy of µω across different scales, which

will be applied in Sections 7 and 8. Lemma 6.1 is an analog of [46, Lemma 4.1], while Lemmas

6.2 and 6.3 replace [46, Lemmas 1.13 and 1.14] with analogous estimates for random measures

at a large proportion of scales.

We begin with some notations. By Theorem 3.2, for P-a.e. ω and J ⊂ [d], πJµ
ω is exact

dimensional with dimension given by dimπJA as in (3.4). Inspired by [46], we define

(6.1) κA :=
d−1∑
j=1

χj + χd(dimA− (d− 1)).

Now, we are ready to state the three lemmas to be proved in this section.

Lemma 6.1. Suppose dimπ[d−1]A = d−1. For η ∈ (0, 1) there exists Ω ⊂ Ω with P(Ω) > 1−η
such that for n ∈ N with η−1 � n,∣∣∣∣ 1nH(µω, Eωn )−NκA

∣∣∣∣ < η for ω ∈ Ω.

Lemma 6.2. Suppose dimπ[d−1]A = d−1. For η ∈ (0, 1) there exists Ω ⊂ Ω with P(Ω) ≥ 1−η
so that the following holds. Let m,n ∈ N be with η−1 � m � n. Then for ω ∈ Ω there is

Qω ⊂ [n] with #n(Qω) ≥ 1− η so that

1

m
H
(
µω, Eωq+m | Eωq

)
> NκA − η for q ∈ Qω.

Lemma 6.3. Suppose dimπ[J ]A = |J | for some J ⊂ [d]. For η ∈ (0, 1) there exists Ω ⊂ Ω with

P(Ω) ≥ 1− η so that the following holds. Let m,n ∈ N be with η−1 � m� n. Then for ω ∈ Ω

there is Qω ⊂ [n] with #n(Qω) ≥ 1− η so that

1

m
H
(
µω, π−1

J E
ω
q+m | Eωq

)
> N

∑
j∈J

χj − η for q ∈ Qω.

34



6.1. Entropy growth along dyadic partitions. In this subsection, we explore the entropy

growth of the random measures along dyadic partitions.

Lemma 6.4. For η ∈ (0, 1) there exists Ω ⊂ Ω with P(Ω) > 1 − η so that for n ∈ N with

η−1 � n and J ⊂ [d],∣∣∣∣ 1nH(πJµω,Dχω|n
d

)
−Nχd dimπJA

∣∣∣∣ < η for ω ∈ Ω.

Proof. By Egorov’s theorem, there is Ω1 ⊂ Ω with P(Ω1) > 1− η/2 so that for ω ∈ Ω1∣∣∣∣ 1nH(πJµ
ω,DnNχd

)−Nχd dimπJA
∣∣∣∣ < η/2.

On the other hand, by Lemma 4.1 there exists Ω ⊂ Ω1 with P(Ω) > 1− η so that for ω ∈ Ω∣∣∣χω|nd − nNχd
∣∣∣ < nη/2.

The proof is finished by combining the above two equations with Lemma 2.2(iv). �

Lemma 6.5. Suppose dimπJA = |J | for some J ⊂ [d]. For η ∈ (0, 1) there exists Ω ⊂ Ω with

P(Ω) > 1− η so that for n ∈ N with η−1 � n,

(6.2)

∣∣∣∣ 1nH(πJµTnω,D
χ
ω|n
d −χω|n

1

)
− |J |N(χd − χ1)

∣∣∣∣ < η for ω ∈ Ω.

Proof. Let ε ∈ (0, 1) be with η−1 � ε−1. By Egorov’s theorem, there is Ω1 ⊂ Ω with P(Ω1) >

1− ε and n0 ∈ N so that for ω ∈ Ω1 and n ≥ n0,

1

n
H(πJµ

ω,Dn) ≥ |J | − ε.

Then by P being T -invariant, we have∫
inf
n≥n0

1

n
H
(
π[d−1]µ

Tnω,Dn
)

dP(ω) =

∫
inf
n≥n0

1

n
H
(
π[d−1]µ

ω,Dn
)

dP(ω)

≥
∫

Ω1

inf
n≥n0

1

n
H
(
π[d−1]µ

ω,Dn
)

dP(ω)

≥ |J | −O(ε) .

On the other hand, we have (1/n)H
(
πJµ

Tnω,Dn
)
≤ |J | for n ∈ N. From this and above, it

follows that there exists Ω2 ⊂ Ω with P(Ω2) > 1−O
(
ε1/3

)
so that for ω ∈ Ω2 and n ≥ n0,

(6.3)

∣∣∣∣ 1nH(πJµTnω,Dn
)
− |J |

∣∣∣∣ ≤ O(ε1/3
)
.

By Lemma 4.1 there is Ω ⊂ Ω2 with P(Ω) > 1−O
(
ε1/3

)
so that for ω ∈ Ω and ε−1 � n,

(6.4)
∣∣∣χω|nd − χω|n1 − nN(χd − χ1)

∣∣∣ ≤ nε.
Combining (6.3) and (6.4), we conclude from Lemma 2.2(iv) that for ω ∈ Ω and ε−1 � n,∣∣∣∣ 1nH(πJµTnω,D

χ
ω|n
d −χω|n

1

)
− |J |N(χd − χ1)

∣∣∣∣ < O
(
ε1/3

)
.

This finishes the proof since η−1 � ε−1. �
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6.2. Proof of Lemmas 6.1–6.3. In this subsection, we prove the lemmas in the beginning of

this section. First we prove Lemma 6.1.

Proof of Lemma 6.1. Let ε ∈ (0, 1) be with η−1 � ε−1 � n. Let Ω be the intersection of the

Ω’s obtained by applying Lemmas 4.1, 6.4 and 6.5 with ε, n in place of η, n. Then P(Ω) > 1−3ε.

In what follows we take ω ∈ Ω. Note that by (4.6),

H(µω, Eωn ) = H
(
µω,D

χ
ω|n
d

)
−H

(
µω,D

χ
ω|n
d

| Eωn
)

+O(1) .

From this, Lemma 6.4, (6.1) and η−1 � ε−1, it suffices to show

(6.5)
1

n
H
(
µω,D

χ
ω|n
d

| Eωn
)

= N
d−1∑
j=1

(χd − χj) +O(ε) .

First we show the upper bound. It follows from Lemma 4.1 that for each E ∈ Eωn ,

log #
{
D ∈ D

χ
ω|n
d

: D∩E 6= ∅
}
≤

d∑
j=1

(χ
ω|n
d − χω|nj ) +O(1) ≤ nN

d∑
j=1

(χd − χj) +O(nε) .

Thus,

(6.6)
1

n
H
(
µω,D

χ
ω|n
d

| Eωn
)
≤ N

d−1∑
j=1

(χd − χj) +O(ε) .

Next, we prove the lower bound in (6.5). Since A−ω|nD
χ
ω|n
d

and π−1
[d−1]

(
×d−1

j=1 Dχω|n
d −χω|n

j

)
are O(1)-commensurable, it follows from (4.3), Lemma 2.2(iii) and (4.7) that

(6.7)

H
(
µω,D

χ
ω|n
d

| Eωn
)

= H
(
νωn ∗Aω|nµT

nω,D
χ
ω|n
d

| Eωn
)

≥ H
(
µT

nω, (Aω|n)−1D
χ
ω|n
d

)
−O(1)

≥ H

(
µT

nω, π−1
[d−1]

(
d−1

×
j=1

D
χ
ω|n
d −χω|n

j

))
−O(1)

= H

(
π[d−1]µ

Tnω,
d−1

×
j=1

D
χ
ω|n
d −χω|n

j

)
−O(1) .

For each E ∈×d−1
j=1 Dχω|n

d −χω|n
j

, by Lemma 4.1 we have

log #

{
F ∈ Dd−1

χ
ω|n
d −χω|n

1

: F ∩E 6= ∅
}
≤

d−1∑
j=1

(χ
ω|n
j − χω|n1 ) +O(1) ≤ nN

d−1∑
j=1

(χj − χ1) +O(nε) .

Thus,

(6.8)
1

n
H

(
π[d−1]µ

Tnω,Dd−1

χ
ω|n
d −χω|n

1

|
d−1

×
j=1

D
χ
ω|n
d −χω|n

j

)
≤ N

d−1∑
j=1

(χj − χ1) +O(ε) .
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Applying Lemma 2.1(v), we conclude from (6.7), (6.8) and Lemma 6.5 that

1

n
H
(
µω,D

χ
ω|n
d

| Eωn
)
≥ (d− 1)N(χd − χ1)−N

d−1∑
j=1

(χj − χ1)−O(ε)

= N

d−1∑
j=1

(χd − χj)−O(ε) .

This, together with (6.6), finishes the proof of (6.5). �

Next, we prove Lemma 6.2.

Proof of Lemma 6.2. By applying Lemma 6.1 with η/2,m in place of η, n, there exists Ω1 ⊂ Ω

with P(Ω1) > 1− η/2 so that for ω ∈ Ω1,

1

m
H(µω, Eωm) > NκA −

η

2
.

By applying Birkhoff’s ergodic theorem and Egorov’s theorem to 1Ω1 , we find Ω ⊂ Ω with

P(Ω) > 1 − η such that for ω ∈ Ω there is Qω ⊂ [n] with #n(Qω) > 1 − η and T qω ∈ Ω1 for

q ∈ Qω. From the above inequality, T qω ∈ Ω1, η−1 � m and (4.9), it follows that

1

m
H
(
µω, Eωq+m | Eωq

)
≥ 1

m
H
(
µT

qω, ET qω
m

)
−O

(
1

m

)
> NκA − η.

This finishes the proof. �

Finally, we prove Lemma 6.3.

Proof of Lemma 6.3. Let ε ∈ (0, 1) be with η−1 � ε−1 � m. Let Ω1 be the intersection of

the Ω’s obtained from applying Lemma 4.1 and Lemma 6.4 with ε,m in place of η, n. Then

P(Ω1) > 1− 2ε. By applying Birkhoff’s ergodic theorem and Egorov’s theorem to 1Ω1 , we find

Ω ⊂ Ω with P(Ω) > 1 − η so that for ω ∈ Ω there is Qω ⊂ [n] with #n(Qω) > 1 − η and

T qω ∈ Ω1 for q ∈ Qω. In what follows we take ω ∈ Ω and let q ∈ Qω. Then T qω ∈ Ω1.

For E ∈ ET qω
m with E ∩πJRd 6= ∅, by Lemma 4.1 we have

log #
{
D ∈ D

χ
Tqω|m
d

: D∩E ∩πJRd 6= ∅
}
≤ mN

∑
j∈J

(χd − χj) +O(mε) .

Thus,

(6.9)
1

m
H
(
πJµ

T qω,D
χ
Tqω|m
d

| ET qω
m

)
≤ N

∑
j∈J

(χd − χj) +O(ε) .

Next we estimate that

H
(
µω, π−1

J E
ω
q+m | Eωq

)
≥ H

(
Aω|qµT

qω, π−1
J E

ω
q+m | Eωq

)
(by (4.3) and concavity of entropy)

≥ H
(
µT

qω, π−1
J E

T qω
m

)
−O(1) (by (4.5))

= H
(
πJµ

T qω, ET qω
m

)
−O(1) (by Lemma 2.1(iii))

= H
(
πJµ

T qω,D
χ
Tqω|m
d

)
−H

(
πJµ

T qω,D
χ
Tqω|m
d

| ET qω
m

)
−O(1) ,
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where the last equality is by Lemma 2.1(v). Since T qω ∈ Ω1 and η−1 � m, combining the

above with Lemma 6.4 and (6.9) yields that

1

m
H
(
µω, π−1

J E
ω
q+m | Eωq

)
≥ N

∑
j∈J

χj −O
(

1

m

)
−O(ε) .

This finishes the proof since η−1 � ε−1 � m. �

7. Proof of the entropy increase result

In this section, we prove the following entropy increase result for random measures, which

serves as an analog to [46, Theorem 1.12]. This result is a crucial ingredient in the proof of

Theorem 1.12.

Theorem 7.1. Suppose dimA < d and dimπJA = |J | for each J ( [d]. For ε ∈ (0, 1) there

exists δ = δ(ε) > 0 so that the following holds. Let η ∈ (0, 1) be with ε−1 � η−1. There exists

Ω ⊂ Ω with P(Ω) > 1 − η so that for n ∈ N with η−1 � n and ω ∈ Ω the following holds. Let

θ ∈Mc(Rd) with diam(supp θ) ≤ 1/ε and 1
nH(θ, Eωn ) > ε. Then 1

nH(θ ∗ µω, Eωn ) ≥ NκA + δ.

To prove Theorem 7.1, we need the following version of the Kaimanovich-Vershik lemma. Its

proof follows a similar approach of [46, Corollary 5.2] and is therefore omitted.

Lemma 7.2. Let ω ∈ Ω, θ, ρ ∈Mc(Rd) and n ∈ N be given. Then for k ∈ N,

H
(
θ∗k ∗ ρ, Eωn

)
−H(ρ, Eωn ) ≤ k (H(θ ∗ ρ, Eωn )−H(ρ, Eωn )) +O(k) .

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. The proof is adapted from [46, Theorem 1.12], with Proposition 5.1,

Lemmas 6.2 and 6.3 respectively in place of [46, Proposition 1.15, Lemmas 1.13 and 1.14]. To

account for the dependence on additional parameters and for clarity, we provide the necessary

details.

Let δ0, ε1 ∈ (0, 1) and m1, . . . ,md, k1, . . . , kd ∈ N be with

(7.1) ε−1 � δ−1
0 � η−1 � md � kd � · · · � m1 � k1 � ε−1

1 � n.

Let Ω be the intersection of the Ω’s obtained by applying Proposition 5.1 with ε, δ0, η,mj , kj

in place of ε, δ, η,mj , kj , Lemmas 6.2 with η in place of η, Lemma 6.3 repeatedly for J ( [d]

with J, η in place of J, η, and Lemma 6.1 with ε1 in place of η. Then P(Ω) > 1 − O(η). Note

that η−1 � mj � kj � n for 1 ≤ j ≤ d. For ω ∈ Ω, let Qω1 , Q
ω
2 , Q

ω
3 be respectively the Qω

obtained from Proposition 5.1, Lemmas 6.2 and 6.3. Then #n(Qω1 ) > δ0, #n(Qω2 ) > 1 − η/4
and #n(Qω3 ) > 1 − η/4. Define Qω := Qω1 ∩Qω2 ∩Qω3 . From δ−1

0 � η−1, it follows that

#n(Qω) > δ0 − η/2 > δ0/2. Let 1 ≤ j ≤ d be the integer obtained along with Qω1 in the

application of Proposition 5.1. In what follows we take ω ∈ Ω, and let Qω ⊂ [n] accordingly.
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Note that diam(supp θ∗kj ) ≤ kj/ε and ε−1 � η−1 � mj � kj � n. Using Lemma 4.2, it

follows that

(7.2)

1

n
H
(
θ∗kj ∗ µω, Eωn

)
≥ E1≤q≤n

(
1

mj
H
(
θ∗kj ∗ µω, Eωq+mj

| Eωq
))
−O(η)

≥ #n(Qω)Eq∈Qω

(
1

mj
H
(
θ∗kj ∗ µω, Eωq+mj

| Eωq
))

+ #n(Qω2 \Qω)Eq∈Qω
2 \Qω

(
1

mj
H
(
θ∗kj ∗ µω, Eωq+mj

| Eωq
))
−O(η) .

By dimA < d, we have ∆ :=
∑d

j=1 χj − κA > 0. By Lemma 2.1(v), concavity of entropy,

(4.7) and η−1 � mj , we conclude from Proposition 5.1 and Lemma 6.3 that for q ∈ Qω,

(7.3)

1

mj
H
(
θ∗kj ∗ µω, Eωq+mj

| Eωq
)
≥ 1

mj
H
(
θ∗kj , Eωq+mj

| Eωq ∨ π−1
[d]\{j}E

ω
q+mj

)
+

1

mj
H
(
µω, π−1

[d]\{j}E
ω
q+mj

| Eωq
)
−O

(
1

mj

)
≥ Nχj +N

∑
j′ 6=j

χj′ −O(η)

= NκA +N∆−O(η) .

For q ∈ Qω2 , by concavity of entropy and η−1 � mj , it follows from Lemma 6.2 that

(7.4)
1

mj
H
(
θ∗kj ∗ µω, Eωq+mj

| Eωq
)
≥ 1

mj
H
(
µω, Eωq+mj

| Eωq
)
−O

(
1

mj

)
> NκA −O(η) .

Combining (7.2), (7.3), (7.4), #n(Qω) > δ0/2 and #n(Qω2 ) > 1− η/4 shows that

1

n
H
(
θ∗kj ∗ µω, Eωn

)
≥ NκA +

δ0N∆

2
−O(η)

≥ 1

n
H(µω, Eωn ) +

δ0N∆

2
−O(η) (by Lemma 6.1)

≥ 1

n
H(µω, Eωn ) + δ2

0 . (by δ−1
0 � η−1)

By a rearrangement,
1

n

(
H
(
θ∗kj ∗ µω, Eωn

)
−H(µω, Eωn )

)
≥ δ2

0 .

By Lemma 7.2 and δ−1
0 � kj � n,

1

n
(H(θ ∗ µω, Eωn )−H(µω, Eωn )) ≥ δ2

0

2kj
.

By Lemma 6.1 and δ−1
0 � kj � ε−1

1 , this completes the proof with δ = δ2
0/4kj . �

8. Proof of Theorem 1.12

In this section, we establish the following theorem, which directly implies Theorem 1.12.

For n ∈ N, let Cn be the partition of ΛN defined by that Cn(x) = Cn(y) if and only if

ϕx|n = ϕy|n for x, y ∈ ΛN.
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Theorem 8.1. Fix N ∈ N. Let Γ be a partition of ΛN satisfying (4.1). Set A = ∨∞i=0σ
−iNΓ.

Suppose χ1 < · · · < χd, and Φj is Diophantine for 1 ≤ j ≤ d. Suppose further that for

x, y ∈ ΛN, n ∈ N and 1 ≤ j ≤ d, πjϕx|n = πjϕy|n implies ϕx|n = ϕy|n. Then

(8.1) dimA = min {d, fΦ(hRW (Φ,A))} ,

where dimA is from Theorem 3.2, fΦ is as in (1.5), and hRW (Φ,A) is as in (1.18).

8.1. Super-exponential concentration. Using Theorem 7.1, we derive the following theo-

rem, which demonstrates that any linear acceleration of scales fails to produce positive entropy

for νωn . This indicates a super-exponential concentration of cylinders.

Theorem 8.2. If dimA < d and dimπ[J ]A = |J | for each J ( [d]. Then for ε ∈ (0, 1) and

n ∈ N with ε−1 � n, there exists Ω ⊂ Ω with P(Ω) > 1− ε so that

(8.2)
1

n
H(νωn , EωMn | Eωn ) < ε for ω ∈ Ω.

Proof. Suppose on the contrary that there exist M > 1, ε ∈ (0, 1), n ∈ N with ε−1 � n, and

Ω1 ⊂ Ω with P(Ω1) ≥ ε so that for ω ∈ Ω1,

(8.3)
1

n
H(νωn , EωMn | Eωn ) ≥ ε.

Let η ∈ (0, 1) be with

(8.4) ε−1,M � η−1 � n.

Let Ω2 be the intersection of the Ω’s obtained from Lemma 6.1 and Theorem 7.1 with ε, η in

place of ε, η. Then P(Ω2) > 1 − 2η. Define Ω3 := Ω1 ∩Ω2 ∩T−nΩ2. Since P is T -invariant,

P(T−nΩ2) = P(Ω2) > 1 − 2η. By ε−1 � η−1 we have P(Ω3) > ε − 4η > ε/2 > 0. In what

follows we take ω ∈ Ω3.

For x ∈ Rd, define θωx := A−ω|n(νωn )Eωn (x). Then diam(supp θωx ) = O(1). Combining (4.5),

(4.11) and (8.3) yields that∫
1

n
H
(
θωx , ET

nω
(M−1)n

)
dνωn (x) =

∫
1

n
H
(
(νωn )Eωn (x), EωMn

)
dνωn (x) =

1

n
H(νωn , EωMn | Eωn ) ≥ ε.

Since 1
nH
(
θωx , ET

nω
(M−1)n

)
≤ C(M − 1) for some C > 0, from above there exists E ⊂ Rd with

νωn (E) > ε/(4C(M − 1)) so that for x ∈ E,

1

n
H
(
θωx , ET

nω
(M−1)n

)
>
ε

4
.

Hence by Tnω ∈ Ω2 and Theorem 7.1 there exists δ = δ(ε,M) > 0 so that

(8.5)
1

n
H
(
θωx ∗ µT

nω, ETnω
(M−1)n

)
≥ (M − 1)NκA + (M − 1)δ.

By ω, Tnω ∈ Ω2 and M � η−1 � n, it follows from Lemma 6.1 that

(8.6)
1

n
H
(
µT

nω, ETnω
(M−1)n

)
> (M − 1)NκA −O(η) ,

and

(8.7)
1

n
H(µ, EωMn | Eωn ) < (M − 1)NκA +O(η) .
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Note that diam
(
supp θωx ∗ µT

nω
)

= O(1). From all above we estimate that,

(M − 1)NκA +O(η)

≥ 1

n
H(µ, EωMn | Eωn ) (by (8.7))

=
1

n
H
(
νωn ∗Aω|nµT

nω, EωMn | Eωn
)

(by (4.3))

≥
∫

1

n
H
(

(νωn )Eωn (x) ∗Aω|nµT
nω, EωMn | Eωn

)
dνωn (x) (by concavity of entropy)

≥
∫

1

n
H
(
θωx ∗ µT

nω, ETnω
(M−1)n

)
dνωn (x)−O(η) (by (4.5))

≥
∫
Rd\E

1

n
H
(
µT

nω, ETnω
(M−1)n

)
dνωn (x) (by concavity of entropy and (4.7))

+

∫
E

1

n
H
(
θωx ∗ µT

nω, ETnω
(M−1)n

)
dνωn (x)−O(η)

≥ (1− νωn (E))((M − 1)NκA −O(η)) (by (8.6))

+ νωn (E)((M − 1)NκA + (M − 1)δ)−O(η) (by (8.5))

= (M − 1)NκA +
εδ

4C
−O(η) . (by νωn (E) > ε/(4C(M − 1)))

Then a rearrangement shows that
εδ

C
< O(η) .

This contradicts δ = δ(ε,M) and ε−1,M � η−1. The proof is completed. �

8.2. Proof of Theorem 8.1. We begin with a lemma that relates the entropies of νωn and µω.

Lemma 8.3. Let η ∈ (0, 1) and n ∈ N be with η−1 � n. Then for ω ∈ Ω,∣∣∣∣ 1nH(νωn , Eωn )− 1

n
H(µω, Eωn )

∣∣∣∣ < η.

Proof. Define ΠnN : ΛN → Rd by ΠnN (x) = ϕx|nN (0) for x ∈ ΛN. Since µω = Πβω, νωn =

ΠnNβω, and
∣∣πj (Π(x)−ΠnN (x)

)∣∣ ≤ O(λω|nj )
for 1 ≤ j ≤ d, the proof is finished by (4.8). �

Next, we give some properties of the function defined in (1.5). Let 1 ≤ j1 < · · · < js ≤ d and

write J = {jb}sb=1. Recall the IFS ΦJ from (2.1). By (1.5),

(8.8) fΦJ
(x) =


`+

x−
∑`

b=1 χjb
χj`+1

if x ∈
[∑`

b=1 χjb ,
∑`+1

b=1 χjb

)
for some 0 ≤ ` ≤ s− 1;

s x∑s
b=1 χjb

if x ∈ [
∑s

b=1 χjb ,∞) .

The following two lemmas provide the desired properties of fΦJ
. Their proofs follow directly

from the definition and are thus omitted.

Lemma 8.4. For x ≥ 0, write

Y (x) :=

{
(y1, . . . , ys) ∈ Rs : 0 ≤ yb ≤ χjb for 1 ≤ b ≤ s and

s∑
b=1

yb ≤ x

}
,
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and let g : Y (x)→ [0,∞) be defined as

g(y) =

s∑
b=1

yb
χjb

for y = (y1, . . . , ys) ∈ Y (x).

If fΦJ
(x) ≤ s, then maxy∈Y (x) g(y) = fΦJ

(x) and the maximal value is uniquely attained at

ỹ :=

(
χj1 , . . . , χjm , x−

m∑
b=1

χjb , 0, . . . , 0

)
,

where m = max{0 ≤ k ≤ s :
∑k

b=1 χjb ≤ x}.

Lemma 8.5. For x ≥ 0 and 0 ≤ m < s,

m+
x−

∑m
b=1 χjb

χjm+1

≥ min {s, fΦJ
(x)} .

Now we are ready to prove Theorem 8.1.

Proof of Theorem 8.1. The proof is adapted from [46, Theorem 1.7] and proceeds by induction

on d. To address the parameter dependence arising from disintegration and to maintain clarity,

we include all necessary details. Assume that the theorem holds whenever the dimension of the

ambient space is strictly less than d. For d = 1, this induction hypothesis is vacuous.

Let ∅ 6= J ( [d]. Since πjϕx|n = πjϕy|n implies ϕx|n = ϕy|n, the partitions (Cn)n∈N are the

same for ΦJ and Φ. Thus hRW (ΦJ ,A) = hRW (Φ,A) by (1.18). Since Aϕx|n = Aϕy|n implies

AπJϕx|n = AπJϕy|n , the partition A also satisfies the assumption in the theorem for ΦJ . Note

that dimπJA is the dimension of πJΠβω = ΠΦJβω for P-a.e. ω, where ΠΦJ is the coding map

associated with ΦJ . Hence by the induction hypothesis,

(8.9) dimπJA = min {|J |, fΦJ
(hRW (Φ,A))} for ∅ 6= J ( [d].

Since combining Theorem 3.2 and Lemma 8.4 implies that fΦ(hRW (Φ,A)) is always an upper

bound of dimA, we only need to show that if dimA < d, then

dimA ≥ min {d, fΦ(hRW (Φ,A))} .

In what follows we assume dimA < d.

First, suppose that dimπ[d−1]A < d − 1. Then dimπ[d−1]A = fΦ[d−1]
(hRW (Φ,A)) by (8.9).

It follows from (8.8) that fΦ[d−1]
(hRW (Φ,A)) = fΦ(hRW (Φ,A)). Hence dimA ≥ dimπ[d−1]A =

fΦ(hRW (Φ,A)).

Next, suppose dimπ[d−1]A = d−1 and dimπJA < |J | for some ∅ 6= J ( [d]. Then dimπJA =

fΦJ
(hRW (Φ,A)) by (8.9). Write J = {jb}sb=1 with j1 < · · · < js, and set Jb = {j1, . . . , jb} for

0 ≤ b ≤ s. It follows from Theorem 3.2 that

s∑
b=1

∆b

χjb
= fΦJ

(hRW (Φ,A)),

where ∆b := hC,AJb−1
− hC,AJb ≤ χjb for 1 ≤ b ≤ s. Recall hC,A∅ = hRW (Φ,A) by definition. Then

Lemma 8.4 implies that hRW (Φ,A) − hC,AJ =
∑s

b=1 ∆b = hRW (Φ,A), and so hC,AJ = 0. This
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shows hC,A[d] = 0 by (3.5) and ξJ ≺ ξ[d]. From dimπ[d−1]A = d− 1 and Lemma 8.4 it follows that

hC,A[j−1] − hC,A[j] = χj for 1 ≤ j ≤ d− 1.

Thus,

hC,A[d−1] − hC,A[d] = hRW (Φ,A)−
d−1∑
j=1

χj .

Combining the last two equations with Theorem 3.2 gives

dimA =
d∑
j=1

hC,A[j−1] − hC,A[j]

χj
= d− 1 +

hRW (Φ,A)−
∑d−1

j=1 χj

χd
≥ min {d, fΦ(hRW (Φ,A))} ,

where the last inequality is by Lemma 8.5.

Finally, suppose dimπ[d−1]A = d − 1 and dimπJA = |J | for each J ( [d]. Recall Sn(Φj),

1 ≤ j ≤ d from (1.7). For n ∈ N, define Sn(Φ) = max1≤j≤d Sn(Φj), and for ω ∈ Ω, define

Sωn (Φ) = min

{
max

1≤j≤d
d(ϕu,j , ϕv,j) : u, v ∈ ΛnN , βω([u]) > 0, βω([v]) > 0, ψu 6= ψv

}
,

with convention min ∅ = 0. Thus Sωn (Φ) > 0 implies Sωn (Φ) ≥ SnN (Φ). Since Φj is Diophantine

for 1 ≤ j ≤ d, there exists c > 0 such that Sn(Φ) > cn for infinitely many n ∈ N. By

pigeonholing, there exists 0 ≤ l ≤ N −1 such that SnN+l(Φ) > cnN+l for infinitely many n ∈ N.

Thus,

(8.10) SnN (Φ) ≥ SnN+l(Φ) > cnN+l ≥ (c2N )n.

In what follows we let η ∈ (0, 1) and n ∈ N be with η−1 � n such that (8.10) holds for n. Take

M large enough so that 2rMN
max < c2N .

Let ω ∈ Ω. If Sωn (Φ) = 0, then H(νωn , EωMn) = H(βω, CnN ) = 0; If Sωn (Φ) > 0, then Sωn (Φ) ≥
SnN (Φ) > (c2N )n by (8.10). From this, (4.2) and 2rMN

max < c2N , it follows that H(νωn , EωMn) =

H(βω, CnN ). Hence,

(8.11) H(νωn , EωMn) = H(βω, CnN ) for ω ∈ Ω.

Let Ω be the intersection of the Ω’s obtained from Lemma 6.1 with η, n in place of η, n, and

Theorem 8.2 with η, n in place of ε, n. Then P(Ω) > 1−O(η). For ω ∈ Ω, we have

NκA >
1

n
H(µω, Eωn )− η (by Lemma 6.1)

>
1

n
H(νωn , Eωn )−O(η) (by Lemma 8.3)

>
1

n
H(νωn , EωMn)−O(η) (by Theorem 8.2)

=
1

n
H(βω, CnN )−O(η) . (by (8.11))

Note that P(Ω) > 1−O(η) and H(βω, CnN ) /(nN) ≤ H(p). From above, taking integral for ω

in Ω with respect to P gives

κA ≥
∫

Ω

1

nN
H(βω, CnN ) dP(ω)−O(η)

≥
∫

Ω

1

nN
H(βω, CnN ) dP(ω)−O(η)
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=
1

nN
H
(
β, CnN | Â

)
−O(η) (by (3.14))

≥ hRW (Φ,A)−O(η) . (by (1.18))

Letting η → 0 shows that κA ≥ hRW (Φ,A). Then by (6.1) and Lemma 8.5,

dimA ≥ d− 1 +
hRW (Φ,A)−

∑d−1
j=1 χj

χd
≥ min {d, fΦ(hRW (Φ,A))} .

This finishes the proof of the final case, and so Theorem 8.1. �
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