DIMENSION OF DIAGONAL SELF-AFFINE MEASURES WITH
EXPONENTIALLY SEPARATED PROJECTIONS

ZHOU FENG

ABSTRACT. Let u be a self-affine measure associated with a diagonal affine iterated function sys-
tem (IFS) ® = {(21,...,24) = (ri1®14ti1, ..., TiaZa+tiq) biea on R and a probability vector
p = (pi)iea. For 1 < j < d, denote the j-th the Lyapunov exponent by x; := .., —pilog[ri ;],
and define the IFS induced by ® on the j-th coordinate as ®; := {z — r; jz + t; j bica. We
prove that if x;, # xj, for 1 < j1 < j2 < d, and ®; is exponentially separated for 1 < j < d,
then the dimension of p is the minimum of d and its Lyapunov dimension. This confirms a
conjecture of Rapaport [46] by removing the additional assumption that the linear parts of the
maps in ¢ are contained in a 1-dimensional subgroup. One of the main ingredients of the proof
involves disintegrating u into random measures with convolution structure. In the course of the

proof, we establish new results on dimension and entropy increase for these random measures.

1. INTRODUCTION

1.1. Background and main results. Computing the dimension of self-affine fractals remains
a fundamental open problem in fractal geometry; see [7, 14]. This paper focuses on determining
the dimension of diagonal self-affine measures under mild assumptions.

An affine iterated function systems (IFS) is a nonempty finite collection ® = {y;(z) = A;z +
t;i}iea of contracting affine maps on R, It is well known [31] that there is a unique nonempty
compact Kg, called the self-affine set, satisfying Ko = U;cp ¢i(Ks). Given a probability vector
p = (pi)ien, the associated self-affine measure u is the unique Borel probability measure on R?
such that p = Y, piip, where o = pro cpi_l denotes the pushforward measure. When the
linear parts {A;};ca are diagonal matrices, ® and u are referred to as diagonal. In recent years,
the exact dimensionality of self-affine measures has been established (see [19] for diagonal case
and [4, 17] for general case). That is, there exists a number dim yu, called the dimension of pu,

such that
log B
lim M =dimpy for p-a.e. x,
r—0  logr
where B(x,r) denotes the closed ball centered at x with radius r.

The dimension theory of self-affine sets and measures has been extensively studied. Notably,
Falconer [13] introduced the affinity dimension dim ® which only depends on the linear parts
{A;}iea. He proved that if ||A;]] < 1/2 for all i € A, then for Lebesgue almost all translations
{ti}iEAa
(1.1) dimyg K¢ = min {d,dim ®},
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where dimy denotes the Hausdorfl dimension. (In fact, Falconer proved this for || 4;|| < 1/3;
Solomyak [52] later showed that ||A;|| < 1/2 suffices.) Similar results for self-affine measures
were obtained by Jordan, Pollicott and Simon [32], who showed that, under the same norm
condition, for Lebesgue almost all {¢;};eq,

(1.2) dim g = min {d, dimy(®,p)},
where dimg (P, p) is the Lyapunov dimension defined in (1.4).

While the above results provide a characterization of typical cases, finding explicit and ver-
ifiable conditions for (1.1) and (1.2) to hold remains an open challenge. Recently, significant
progress has been made in this direction, particularly under the assumption that {4;};ca is
strongly irreducible (see [6, 29, 42] for d = 2 and [41, 47] for d = 3).

Diagonal systems, which contrast with and complement the strongly irreducible case, form
a significant subclass of IFSs that have been studied since the 1980s [9, 39]. In this paper, we
consider a diagonal affine IFS on R¢:

(1.3) ® = {pi(r) = Aix + ti}ien,

where A; = diag(4.1,...,7i,4) (0 < |r;;| < 1) are diagonal matrices, and t; = (¢ 1,...,tiqd) € RY.
Let Kg denote the corresponding self-affine set. Given a probability vector p = (p;)iea, let
1 be the self-affine measure associated with ® and p. To state the results concerning the
dimensions of K¢ and p, we introduce some definitions. For 1 < j < d, denote the j-th
Lyapunov exponent by x; := Y .., —pilog|r;;|, and define the IFS induced by ® on the j-th
coordinate as ®; := {x — 1 jz +t; j}ica. Without loss of generality, we assume after possibly
permuting the coordinates that y1 < --- < x4. The Lyapunov dimension for ® and p is given
by

(1.4) dim,(®,p) = fo(H(p)),

where H(p) := > ;o —pilogp; is the entropy, and fg: [0,00) — [0, 00) is a function defined as

. _ j_ X ; it1 .
j+% ifz € [z{,zlmei;xb) for some 0 < j <d—1;

(1.5) fa(x) =

€T . d
dzgzl Xb ifze [szl Xb> OO) )

Next, we introduce the mild separation conditions, originally arising from Hochman’s seminal
work [26]. Given two affine maps 1, 1¢2: R — R with ¢;(z) = s;x + b; for i = 1,2, define
oo if 51 # 89;
d(t1,12) = .
|by — b2| otherwise.
For an affine IFS U = {4;};ca on R and n € N, denote ¢, = by, - - - Uy, for u =y ---u, € A™.
Define

(1.6) Ay (¥) = min{d(y, ) : u,v € A", u # v}
and
(1.7) Sp (V) = min{d(¢y, ¥y): u,v € A, by, # Py},

with the convention min @) = 0.



Definition 1.1. Let ¥ be an affine IFS on R. We call ¥ exponentially separated (resp. Dio-
phantine) if there exists ¢ > 0 so that A, (V) > ¢" (resp. S, (¥) > ¢") for infinitely many n € N.
We say ¥ has no exact overlaps if A,(¥) > 0 for all n € N, or equivalently, the semigroup
generated by W is free.

Remark 1.2. It follows from Definition 1.1 that W is exponentially separated if and only if ¥ is
both Diophantine and has no exact overlaps. Furthermore, ¥ is Diophantine if it is defined by

algebraic parameters (see [26]).

Very recently, Rapaport [46] made a breakthrough in the dimension theory of diagonal self-
affine sets and measures. Specifically, [46, Theorem 1.3] establishes that (1.1) holds if, for each
1 < j1 < j2 < d there is i € A so that |1, | # |rij,|, and ®; is exponentially separated for
1 < j < d. This builds on an analogous result regarding the dimension of y ([46, Theorem 1.7])
under the additional assumption that the linear parts of ® lie within a 1-dimensional subgroup.
That is, there exist c1,...,cq > 0 such that

(Irial,- - |rial) € {(ch, ..., ch): t € R} forall i € A.

This assumption is satisfied, in particular, when A; is the same for all i € A. Regarding this
assumption, Rapaport pointed out that his argument crucially depends on it, but he expects the
result remains true without it (see [46, Remark 1.8]). Our main result confirms his conjecture
by removing the additional assumption.

Theorem 1.3. If x1 < --- < xq and ®; is exponentially separated for 1 < j < d, then

dim g = min {d, dimg(®,p)} .

Before discussing the proof of Theorem 1.3 in Section 1.3, we provide some remarks on the
assumptions and discuss several applications.

Remark 1.4. Due to the phenomenon of saturation (see [27, Example 1.2]), it is not hard
to find examples showing that the assumption x; < -+ < x4 cannot be dropped. For the
reader’s convenience, we give one such example. Let A\ € QN(1/v/2,1) and n > 2 such that
A" < 1/3. Define ¥ = {4o(x) = Az, ¢1(z) = Az +1}. Consider the IFS @ = {¢u},c(0,13» OB R2
given by @o..o(z,y) = (A" + ¢¥1..1(0), A"y), p1.1(2,y) = (\"2, A"y + ¢1..1(0)) and pu(z,y) =
(A" + 1, (0), A"y +1,,(0)) for uw ¢ {0---0,1---1}. Let p the self-affine measure associated with
® and the uniform probability vector p on {0,1}". Since the orthogonal projection of ® onto
the line {(t,—t): t € R} generates a Cantor set, it follows from A" < 1/3 and \ > 1/+/2 that

log 2

log 3
dim p < 1—|—L
—nlog A

On the other hand, by Remark 1.2 and A € Q, the IFS ®; = &3 = U™ = {¢,}yefo1}n I8
exponentially separated.

<2:min{2 } = min {2, dimz (P, p)} .

" —log A

Remark 1.5. Various carpet-like examples (see e.g. [3, 9, 20, 22, 36, 39]) indicate that it is
necessary to assume that ®; has no exact overlaps for 1 < j < d. One may expect that the
result remains true under this necessary assumption. Recently, Rapaport and Ren [49] verified
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this conjecture for homogeneous diagonal IFSs with rational translations.! However, even when
d = 1, this conjecture is considered one of the major open problems in fractal geometry and
well beyond our reach (see [28, 55]).

1.2. Applications. By Remark 1.2, the following is a direct application of Theorem 1.3.

Corollary 1.6. Suppose x1 < --- < xq. If for 1 <j <d, ®; is defined by algebraic parameters
and has no exact overlaps, then dim p = min {d, dimz(®,p)}.

Below we determine the dimension of a concrete new example by Corollary 1.6.

Example 1.7. Let a,b € (1/2,1) be distinct algebraic numbers such that P(a,b) # 0 for each
two-variable polynomial P with coefficients in {0,£1} and P(0,0) = 1. For example, choose
a=qi/q2,b= q/q3 € Q, where qi, 2, g3 are distinct prime numbers. Let p be the self-affine
measure associated with the IFS @ = {(x,y) — (ax, By), (z,y) — (Bx + 1,ay + 1)} on R? and
the probability vector p = (p1,1 — p1) with p; € (0,1/2). Then dim ¢ = min{2, dim(®,p)}.

Next, we give a result about the typical validity of (1.2) in the spirit as [26, Theorem 1.8].
By dimp we denote the packing dimension. Recall that dimg E < dimp E for E ¢ R?. For
m > 2, let A™~1 denote the set of probability vectors in R™.

i1 <iz <mandl<j<d. Forr= (r;;)1<icmi<j<d € (=1, )\{0}¥™ andp € A™ 1, let piy
denote the self-affine measure associated with the IFS ®r = {(x)1<j<q = (Tij2; + tij)1<j<d}ioq
and the probability vector p. Then, there exists & C ((—1,1) \ {0})%™ with dimp & < dm — 1
such that for v ¢ &, there exists Fp C A™™ 1 with dimp Fr < m — 2 so that for p ¢ Fr,
dim gty , = min {d, dimp,(®y,p)}.

{z = rijz 4t} on R, with its coding map denoted by Tlg(,) (see (1.15)). For distinct
sequences * = (z1),y = (yx) € {1,...,m}", there exists n € N such that z,, # y, and x3, = yy
for k < n. This gives:

Apy(r)) i= g, (2) — Mo, (y)

o
=Targ Ten_1,j ((twn,j —tyn i) + E (Teng Tapgterend = Tynd Tyk,jtyk+1,j)> .

k=n
Since t1,...,tm ; are distinct, we have t,, —t,, # 0. Consequently, A, ,(r;) # 0 if the
norm of r; is sufficiently small, ensuring that the summation in the above expression is small,
depending on (t; ;)" ;. Thus, A, ,(r;) is a nonzero real analytic function of r; on each connected
component of ((—1,1)\ {0})™. By applying [27, Theorem 1.10], for each 1 < j < d, there exists
& C ((—1,1)\ {0})™ with dimp &; < m — 1 such that ®(r;) is exponentially separated for
r; ¢ &. Define

.y {re( 1y \{op™:r e 8},

=1

IThe author believes that incorporating the results from [18] into [49] can relax the assumption of rational

translations to algebraic translations.



and

e= {(Tz;j)lgiSm,lsj'Sd € (=L D)NAON™: Jrijy | = [rigy| for 1 <i < m}
1<j1<j2<d
Set & = EUE. Thus, forr ¢ & and 1 < j < d, ®(r;) is exponentially separated. Since
dimp & < dm — 1 and dimp € < dm — m, we have dimp & < dm — 1.

For r = (r;j)1<i<mi<j<d € ((=1,1)\ {0})¥™\ & and 1 < ji < ja < d, define a vector
Vjy o := (log|ri j,| —log|rij,|)i%q. Then vy, 4, #0byr & E. If vj, 4, is parallel to (1,...,1), then

1=
A™ 1Nyl =, where vt

1o 71, denotes the orthogonal complement of vj, ;,. Define

F = U {vj‘l’h: 1 < ji < j2 <d and vj, j, is not parallel to (1,..., 1)}

r

Set Fr := A™~'N F.. Then dimp Fr < m — 2. For p ¢ F;, the Lyapunov exponents of [y p aTE
distinct. The proof is finished by Theorem 1.3. (]

We determine the measures of full dimension on certain overlapping diagonal self-affine sets
(see [8, 11, 25, 33, 35, 40] for further discussion on this topic). A measure v on Kg is called
an ergodic measure of full dimension if dimv = dimpy K¢ and v = 1, where II is the coding
map in (1.15), and 7 is an ergodic shift-invariant measure on AN. Let Sy denote the symmetric
group over {1,...,d}. For o € Sy, i € ¥ and s > 0, define

Tiom)] Tio(s)] - |Ti,a(sz+1)\S_LSJ if s < d;
Ti1-"°T; § 1 S ~Z Q.
’ , T ,d| /d fs>d

(1.8) ¢5(1) =

By [23, Theorem 2.1], the affinity dimension dim4 ® is the unique s > 0 such that

(1.9) ggji;\ﬁ(i) =1.

Corollary 1.9. Let ® be as in (1.3) with d = 2. Suppose |ri1| # |riz2| for some i € A,
and ®1, Py are exponentially separated. Define 3 := {a €52t D ica gbgim*‘q’(i) = 1}, which is
nonempty by (1.9). If 0 < dimg ® < 2, then the ergodic measures of full dimension on K¢ are
precisely the self-affine measures associated with ® and the probability vectors (¢3™A % (i));en
for o € ¥. In particular, ¥ = Sy when (|151])ica is a permutation of (|r;2|)iea-

Proof. We first show that the ergodic equilibrium states for the singular value function of
diagonal matrices are Bernoulli. Let v be an ergodic shift-invariant measure on AN. The

Lyapunov dimension dimy, v is defined as the unique s > 0 satisfying
1
(1.10) h(v) + lim — /log ¢*(Agjn) dv(z) = 0,
n—oo N

where h(v) denotes the measure-theoretic entropy (see [56]), Ay, = Ay, -+ Ay, for v = (2,) €
AN, and ¢*(A) is the singular value function of A (see [13]). For k € Z N[0, d], it is well known [13]
that ¢*(A) = ||A"¥||, where A denotes the exterior product, A"¥ is the linear map induced by
A on AFR? as AN (v Ao Awvg) = (Avy) A --- A (Auy) for vp,...,vp € R and ||| is the
standard Euclidean operator norm on AFR?. Since AFR? = span {ea(l) N Negry: 0 € Sd} is
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a finite-dimensional vector space, where ey, ..., eq denote the standard basis of R%, we have for
k e ZN[0,d],

Jim [ log (A dvla) = T - [ logllA2% | dv(a)
= Jun o [ s HAxm oty - M) | @)
= gréaxz ]) log gbk
where [i] := {(z,) € AY: 27 = i}, while in the last equality we have used that {A;};cn are

diagonal, and v is shift-invariant. From this and ¢*(A4) = (¢l*/(4)) LoJ+1=s (gf)LSJ“(A))SiLSJ for
s > 0, it follows that
1
1.11 lim — [ log¢® du( ]) log @5 (
(1.11) nggon/ogw o) dv(z E’éa{jz ) log &3 (
Let 3, denote the Bernoulli measure on AN with marginal (v([i]))ica. It is well known (see
g. [56]) that h(v) < h(B,), with equality if and only if v = ,. From this, (1.10) and (1.11),

it follows that dimy v < dimp 8, with equality if and only if v = £,. Combining this with
dim Iy < dimy, v < dimg ® (see [32]), [46, Theorem 1.3], and dimy ® < 2 yields

(1.12) dim Iy < dimy v < dimy, 8, < dimg ® = dimy Kg,

where the second inequality is strict unless v = 3, that is, v is Bernoulli.

Write sg := dim4 ®. By Gibbs’ inequality (see e.g. [56, Lemma 9.9]) and (1.9), the probability
vectors p, := (¢5°(i))ien for o € ¥ are precisely the probability vectors ¢ = (¢;)iea satisfying

Z qllogql—kmaXquogQZ) (i) = maXlogZ¢50 —0.

1SN 4ien €A
By (1.10) and (1.11), this implies that dimg (P, p,) = dimg ® for o € .

Let 0 € ¥, and let p, be the self-affine measure associated with ® and p,. By (1.12) and
dimg (P, p,) = dimy ®, it suffices to prove that dim p, = dimp(®P,ps). From Theorem 1.3, it
remains to verify that x,(1)(Ps) # Xo(2)(Po). If there exists a > 0 such that |r; ;1)|/|70(2)| =
for all i € A, then a # 1 since |r; 5(1)| # [ri5(2)| for some i € A, implying X, (1)(Po) # Xo(2)(Po)-
Now suppose there exist some i1 # iz € A such that [r; ;1)l/|7i, 0)| # Tis,0)|/ITi0,02)]-
Define ¢ := s¢ if 59 € (0,1] and t := 2 — s¢ if sp € (1,2). Then

. ’ri,a 2
t (Xo@) (o) = Xo()(Ps)) = Y _ po(i)log @)

‘ t

oA |7 a(1)|t
T;
< 10g Z | 1,0(2) ;t
€A
< log Z ¢ (i) =
€A

where the strict inequality is by the concavity of log(-) and |7, o(1)|/[74,0(2)| 7 Ti0,0(1)/Ti2,0(2) 5
while the last inequality follows from maxgres, D ;cp @50 (1) = Zie A 00(i) = 1. Since t > 0, we
conclude that x,(1)(Ps) # Xo(2)(Ps), completing the proof. O
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Recently, Pyoréla [45] determined the dimension of orthogonal projections of planar diagonal
self-affine measures under an irrationality condition (see [10, 16, 21, 30, 44] for earlier results).
Building on this, we combine [45, Theorem 1.1] with Corollary 1.9 to obtain the dimension of

orthogonal projections for a class of overlapping self-affine sets.

Corollary 1.10. Let ® be as in (1.3) with d = 2. Suppose |r;1| # |ria| for some i € A,
and ®1, P are ewxponentially separated. Suppose further that there exist (i1,i2) € A? and
(j1,J42) € {1,2}? such that log|ri, j,|/10g|riy j»| ¢ Q. Then dimp 7(Ke) = min{l,dima ®} for
each orthogonal projection m onto a line not parallel to the coordinate axes. For the orthogonal

projection mj onto the j-th coordinate axis with j = 1,2, dimy 7j(Ke) = min{l, dimy ®;}.

1.3. About the proof. Theorem 1.3 is reduced from Theorem 1.12 which concerns the di-
mension of a disintegration of the measure p. This disintegration is defined as follows. For
any partition £ of a set X, let £(x) denote the unique element of £ containing z € X. Given
u=up---u, € A", define @, = @y, 0---0p,,. Fix N € N. Define the partition I of AN by

(1.13) ['(z) =T(y) if and only if A, = A for x,y € AN,

Py|N

where A, denotes the linear part of an affine map v, and z|N represents the first N digits
of x € AN. Endow AN with the product topology, and let o be the shift map defined by
o((z1),) = (@k41)3,- Set T =0 and A= V2 T"T'. Let {8}, can be the disintegration
of the Bernoulli measure 3 := p" on AN with respect to A; see Section 2.4 for further details.
Define the quotient space Q = AN/A = {1,...,|T'|}V, and endow it with the pushforward
measure P of 8 under the natural projection = — A(z). For w € Q, define f* = B whenever
w = A(z) for some z € AN. Then

(1.14) 5= [ ptasw = [ paPe)

Let IT: AN — R? be the coding map associated with ®, defined by,

(1.15) I(z) = lim @, 0---0¢, (0) for z = (2,)2, € AN

n—o0

It is well known that p = II5. For w € €, define u* = I15¥. Applying II to (1.14) yields the
desired disintegration:

(1.16) ,u:/Q,uf’dP(w).

Recently, similar disintegration techniques have been widely applied to study various prop-
erties of self-conformal measures; see e.g. [1, 2, 24, 34, 51, 54]. Notably, Saglietti, Shmerkin
and Solomyak [51] established the typical absolute continuity of self-similar measures on the
line. From this, Corollary 1.8 and [53], it seems possible to show the typical absolute continuity
of diagonal self-affine measures, but we do not pursue this here. The idea of disintegrating
stationary measures into well-behaved random measures was introduced by Galicer, Saglietti,
Shmerkin and Yavicoli [24].

While many prior works are motivated by the infinite convolution structure of random mea-
sures, our primary goal is to construct minimal cut-sets U, of the finite words over A. These
cut-sets ensure that the cylinder sets {II([u]) }4es, have comparable diameters respectively along
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each coordinate. Such minimal cut-sets are naturally found in conformal settings (see [26, 48])
or under the specific assumptions on the linear parts of ® (see [46]). However, achieving this in
general non-homogeneous affine settings is almost impossible. Consequently, the additional as-
sumption is crucial in [46]. Later in this subsection, we further illustrate how the disintegration
method underpins our approach.

As a starting point, we establish the exact dimensionality of u* for P-a.e. w; see Theorem 3.2
for a detailed statement. Theorem 3.2 is a version of [19, Theorem 2.11] (see also [17, Theorem
1.4]) in the context of disintegrations.

Theorem 1.11. There exists dim A > 0 such that for P-a.e. w, u* is exact dimensional with
dimension given by dim A. Furthermore, dim A satisfies a Ledrappier-Young type formula (3.4).

It is well known [57] that for an exact dimensional measure #, commonly used notions of
dimension coincide. In particular, dim 6 = lim,, %H (0,D,), where D,, denotes the dyadic
partition of R?. For the basics of entropy, please refer to Section 2.3. By (1.16) and the concavity
of entropy, we obtain
(1.17) dimp = nh_)n(f)lo ;H(/ o dP(w),Dn> > nh_)n(f)lo %H(,uw,Dn) dP(w) = dim A.

We are now ready to state the main theorem regarding the dimension of . For 1 < j <d,
let 7; denote the orthogonal projection from R? to the j-th coordinate axis. For n € N, let C,
be the partition of AN such that C,(z) = C,(y) if and only if Paln = Pyjn for z,y € AN, The
conditional entropy H(-,- | -) is defined in (2.4).

Theorem 1.12. Suppose x1 < --- < xq, and ®; is Diophantine and for 1 < j < d. Suppose
further that for x,y € AN, n e N and 1< j <d, TjPaln = TjPyln implies P = Py Then
dim A = min{d? f‘I) (hRW((I)7 A))}a
where fo () is as defined in (1.5), and
. 1 ~ .1 ~
(1.18) hw (0, 4) = lim —H (8. Coy | A) = inf —H(8,Con | A).
The limit exists by subadditivity (see (3.6)).

Reduction of Theorem 1.3 from Theorem 1.12. Since ®; is exponentially separated for 1 < j <
d, the assumptions of the theorem are satisfied, and C,ny = \/?ﬁ)_la_ip, where P denotes the
partition of AN based on the first digit. Note that A= (\/;‘Z_OIT*if) \/T*”,Z, and S is Bernoulli.
Then
H(B VN o P | A) = H (8,2 o™ 'P | Vi) T T) (by Lemma 2.1(vii))
_ H(,B, v;ﬂ)—la*ip) — H(B,V'Z'TT)  (by Lemma 2.1(v))
= (nN)H(p) — H(B,VI—4T~T).

Since {Ay, }iea are commutative, by (1.13) we have H (83, v?;olT_iF) < nlog|I'| <2n|A|log N.
From this, (1.18) and the above equation it follows that

|hrw (@, A) — H(p)| < 2[A



From this, (1.17), Theorem 1.12, and (1.4), letting N — oo yields that
dim g > dim A = min{d, fo(hrw (®,A))} — min {d, dim(®,p)} .

This completes the proof since dim p < min {d, dimz,(®,p)} always holds. O

We prove Theorem 1.12 by following the approach of Rapaport [46]. The proof relies on
two key ingredients: a Ledrappier-Young type formula and an entropy increase result. For
the first ingredient, we establish a Ledrappier-Young type formula for certain disintegrations
of self-affine measures in Theorem 3.2, a result may be of independent interest. Based on an
argument inspired by ideas from [5], this formula reduces the general case to the one where the

entropy increase result can be applied.

The proof of the entropy increase result involves analyzing the multi-scale entropy of repeated
self-convolutions of a measure with nonnegligible entropy, as well as the component measures
of u, along certain nonconformal partitions. In [46], the assumption that the linear parts of ®
stay in a 1-dimensional subgroup is used to find minimal cut-sets U,,, n € N of A* such that

(1.19) Ay, = A, for u,v € U,,

where ~ means being entrywise comparable. These cut-sets are essential for estimating the
asymptotic entropies of components of  within the desired error (see [46, Section 4]). For each
p¥, there are natural partitions £2,n € N (see (4.4)). Motivated by this and (1.19), we consider
the random measures u and establish the entropy increase result accordingly. However, diffi-
culties arise because i is only dynamically self-affine (see (4.3)), and the partitions £ depend
on w. To address this, we utilize the dynamics on (2, P) to prove appropriate modifications of
the required lemmas. Based these lemmas, it is not difficult to adapt the arguments in [46] to

derive Theorem 7.1, a version of the entropy increase result for random measures.

1.4. Structure of the article. In Section 2, we introduce the basics of the conditional en-
tropies and disintegrations. Section 3 is devoted to proving the Ledrappier-Young type formula
for random measures, thereby showing Theorem 1.11. In Section 4, we define the disintegra-
tions with respect to the linear parts of the IFS. Sections 5 and 6 are prepared for the entropy
increase result which itself is proved in Section 7. Finally, Theorem 1.12 is proved in Section 8.

1.5. Acknowledgement. I would like to thank Ariel Rapaport for suggesting the problem,
pointing out the useful references [46, 51], and providing helpful comments on an early version
of this paper.

2. PRELIMINARIES

In this section, we introduce the necessary notations and setup, present the basics of condi-
tional information theory, and discuss key properties of specific disintegrations.
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2.1. Notations. Throughout this paper, the base of log(-) and exp(-) is 2. For n € N, we define
[n] = {1,...,n}, with convention [0] = (). The normalized counting measure on [n] is denoted
by #,, that is, #,({k}) = 1/n for k € [n]. For a finite set £, we use #& or |E| to represent its
cardinality. By £ C F we mean that F is a proper subset of F'.

For a metric space X, let B(X) denote the Borel o-algebra on X, and M(X) the set of all
Borel probability measures on X. By M.(X) we denote the members of M(X) with compact
support. For # € M(X) and E C X, the restriction of § to E is written as 6|g, and the
normalized restriction is 0 = 6|g/0(E) if 6(E) > 0.

Following [46, Section 2.1], we use the convenient notation <. Given Rj, Ry > 1, we write
R; < Ry to indicate that Ry is large with respect to (w.r.t.) R;. Similarly, given 1,e2 € (0, 1),
we write R < 61_1, 52_1 < Ry and 51_1 < 62_1 to respectively indicate e; is small w.r.t. Ry, Ro
is large w.r.t. 9, and &9 is small w.r.t. £1. The relation < is clearly transitive. For example,
the statement “Let m > 1, £ > L(m) > 1, k > K(m,{) > 1 and ¢ < g9(m, ¢, k) be given.” is
equivalent to “Let e € (0,1) and m, £,k > 1 be with m < / < k < e~ 1"

2.2. The setup. We fix a diagonal affine IFS ® = {p;(z) = A;z + t;}ica on R, where A; =
diag(ri1,...,7q) with r;; € (=1,1)\ {0}, and t; = (ti,j)?zl € R?. The associated self-affine set
is Kg. We fix a probability vector p = (p;)ica, and p is the corresponding self-affine measure.
Let IT: AN — Kg denote the coding map defined as in (1.15). It is well known that u = TS,
where 8 := p" is the Bernoulli measure on AN. For 1 < j < d, the j-th Lyapunov exponent
is xj = D> ;cn —Pilog|r; j|. As explained in Remark 1.4, we always assume x; < --- < X4
Without loss of generality, we also assume diam(Kg) < 1, where diam(-) denotes the diameter

in Euclidean metric.

For i € A and j € [d], define ¢; j: R — R by ¢; j(z) = rijz +t; ;. For 0 # J C [d], the IFS
induced by ® on R’ is defined as

(2.1) P = {wistien, where @; 5 ((zj)jes) = (pij(z;))jes for i € A.

For 1 < j <d, we write ®; in place of ®(;. It follows that ® = P4 and ¢; = p; [q for i € A.
The collection of all finite words over A is denoted by A*, including the empty word &. Write

|I| :==nif I € A" and || := 0. For z = ()2, € AN and n € N, let x|n = x1-- -z, and

z|0 = @. For I € A*, the cylinder set is [I] := {x € AN: z||I| = I} . For I =4y ---i, € A" and

1 < j <d, define

(2'2) PI = @iy © " Pig, A]:Ail"'Ain’ AJI:ril,j"'rin,j’

and

)\§ = }Aﬂ and X§ = —logAjI-.
Let {e1,...,eq} be the standard basis of R%. For J C [d], let 77 denote the orthogonal projection
onto span{e; }jes, that is,

— 4 . d
my(z) = Z(ej,x>ej for z € RY,
jeJ

where (-,-) is the standard inner product on R%. In particular, 7y is the zero map and g is
the identity map on R%.
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2.3. Conditional expectation, information and entropy. Let (X, B,6) be a probability
space. For a sub-cg-algebra F of B, the conditional expectation of an integrable function f given
F is denoted by E(6, f | F). For a countable (B-measurable) partition £ of X, the conditional
information of £ given F is defined as

(2.3) 10,61 F) =) ~1alogE(6, 14| F),
A€
where 1g denotes the indicator function of a set S. The conditional entropy of £ given F is
(24)  H(O.€| F) :—/ 0, | F) dH—/Z CE(0,14 | F)logE(0,14 | F) d
Agg

If F = N, the trivial o-algebra consisting of sets of #-measure 0 or 1, the above quantities

reduce to their unconditional counterparts:
L(0,) =1(0,¢ | N) and H(0,§) =H(0,£|N).
For S C B, let S denote the o-algebra generated by S. Given a countable partition 7, we write

(2.5) L0,& ) =1(0,§[n) and  H(0,&|n)=H(O,£[n).

In this case, the conditional entropy satisfies

HO,6n) =) 0(A)-H(04,5),

Aen
where 04 := 0(A)710|4 for A € n with §(A) > 0

The following lemma summarizes key identities and properties of conditional information;
see [43, 56] for details. For countable partitions ni,...,n,, let m V --- Vo, = Vi =
{N_, A;: Aj € mi, 1 < i <n}. For o-algebras Fi, Fa,..., let F1 V FaV--- or V;F; denote the
o-algebra generated by U; F;. Below we take the convention 0/0 = 0.

Lemma 2.1. Let T' be a measurable map from a separable probability space (X, B,0) to another
measurable space (Y,B'). Let A € B. Let &,1,( be countable partitions of X, and let € be a
countable partition of Y, such that H(0,€),H(0,n),H(0,¢),H(TH,E) < 0. Let F,F1,Fa,...
be sub-c-algebras of B, and let G be a sub-o-algebra of B'. Then the following hold.

(i) E(TO,g|G)oT =E(9,g0T | T7'G) for g € L'(Y,B',T9).

(i) (T0,E | G)oT =1(0, T | T71G).
(i) H(TY,E|G)=H (0, T7'¢ | T71G).

(iv) 6,6V | F) =10, | F) +1(6.n| FVE).

(0) HO.€ V| F) = H(9,¢ | F)+ H(0.n| FVE).

('Ui) [f@(AﬂFlﬂFg)/g(FlﬂFg) = 9<AﬂF1)/9(F1) for Fy € F, Fy € Fo, then

E(G, 14 ‘ Fi \/.FQ) = E(@, 14 ’ .Fl).
(vii) If (AN F1NFy)/0(F1NFy) = 0(ANFL)/0(Fy) for Ae & Fy € F,Fy € Fy, then
I(ea§|]:1\/]:2):]:(07£|]:1) and H(07§|]:1\/‘F2):H(9a€|]:1)
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(viii) If Fpy C Fny1 for n € N and F, 1+ F, then sup, 1(6,¢ | F,) € LY(0), and 1(0,&, F,)
converges 6 a.e. and in L'(0) to 1(0,& | F). In particular, lim, .. H(0,&|F,) =
H(0,§ | F).

Next, we present several useful inequalities for estimating conditional entropy. For partitions
& and 7, we say 1 refines &, denoted by £ < 7, if each member of 7 is a subset of some member
of €.

Lemma 2.2. Let (X, B) be a measurable space, and let 0,61, ...,0, be probability measures on
(X,B). Let &,n be countable partitions of X, and let Fi,Fa be sub-o-algebras of B. Then the
following hold.

(i) H(B,€) <log #{A € £: 0(A) > 0}.
(i) If £ <m and F1 C Fo, then H(0,£ | Fo) < H(0,& | F1) < H(0,n | F1).
(i) If ¢ = (q;)}_y is a probability vector and 0 =" | q;0;, then

Z(h (6:,€ [ m) < H(0,€ | n) <ZQ1 (0:,€ [ ) + H(q).

=1

(iv) Given C > 1, we say that & and n are C-commensurable if for each A € € and B € n,
#{A €& ANBA0}<C and #{B €& B nA#0}<C.

If &€ and n are C-commensurable, then |H(6,&) — H(0,n)| <logC.

2.4. Conditional measures and some disintegrations. We begin with a foundational result
from Rohlin’s theory of conditional measures; for further details, refer to [12, 50].

Theorem 2.3 (Rohlin [50]). Let X,Y be Euclidean spaces or product spaces of countably many
finite sets. Let n be a partition induced by a Borel measurable map m: X — Y, that is, n =
{n=Yy): y € Y}. Let 0 be a Borel probability measure on X. Then for 0-a.e. x there exists
a probability measure 03 supported on n(x). These measures are uniquely determined up zero
0-measure by the properties: if A C X is Borel measurable, then x — 01(A) is N-measurable,
and (A) = [601(A)dO(z). This means 6 = [ 07 d0(z) in the sense that [ [ f(y)d6i(y)do(x)
for f € LY(X,B(X),0).

The family of measures {0, }.cx is called the system of conditional measures of 6 associated
with 1 or the disintegration of 0 with respect to .

Next, we introduce certain disintegrations and present some of their properties. Fix N € N.
Let T be a partition of AN such that for x,y € AN, 2| N = y|N implies I'(x) = T'(y). Set T = o
and A = V°,T~'I'. Define the quotient space 2 := AN/A =2 TN, Let P be the Bernoulli
measure on ) = I'N with marginal (8(w1))w,er- Specifically, for wy -+ w, € T n > 1,

(2.6) P(lwr--wa)) = [] Blwr) = 8 {x e AN: A(z) € [wr - -wn]} .
k=1

This shows that P = 30 A~!, that is, P is the pushforward of 3 under 4. Here, we slightly
abuse the notation by using A(z) to denote both a set in AN and a sequence in Q = I'N,
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For w; € T, define a measure p** on AN by p*t := B, if f(w1) > 0, and let p** be the
zero measure if B(w1) = 0. For w = (w,)%; € Q, define a product measure 3 on AN via the
identification AN = (AM)N as

n

(2.7) () = [ e (k) for I=1---1, € (AN)",n > 1.
k=1

Then B“ is supported on A(z) whenever w = A(z) for some x € AN. On the other hand,
let {BA},ean be the disintegration of 3 with respect to A. It follows from Theorem 2.3, A=
(\/;ZOIT_"f) V A and Lemma 2.1(vi) that for S-a.e. z and I =1, --- I, € (AN)", n > 1,

B =B (81| A) (@) = B(8, 1y | Vi TT) (x)

= AD((1),

where the last equality is by (2.7). Hence S = BAE) for B-a.e. z. Combining this, Theorem 2.3
and P = B0 A~!, we obtain

(28) 5= [ Btas) = [ #4045 = [ 5 aP(e).

Recall the coding map II from (1.15). For w € Q, define p¥ := I1¥. Applying II to (2.8)
yields a disintegration of u as

(2.9) ,u:/Q,ude(w).

For w € 2, the random measure p“ satisfies the dynamical self-affinity. By abuse of notation,
let T' be the shift map on 2, defined by T'((wn)32 1) = (wn+1)5>;. Using (2.7), we have, for
w € Q,

(2.10) T8 =p",
and so for u € AV,
(2.11) T(8°)1) = B ([u]) 87

From (1.15) it follows that for u € A*,

(2.12) puolloc™ =11  on [u].
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Thus, p* satisfies the dynamical self-affinity:
pe =B = Y 1By

uc€AN
= Z (0uIIT) 3%y (by (2.12))
(2.13) ueAN
= > (pull) (5°([u)B™) (by (2.11))
ucAN
= 3 B ™. (by p7¢ = TI5T)
u€AN

3. EXACT DIMENSIONALITY FOR DISINTEGRATIONS

In this section, we establish the exact dimensionality of certain random measures and show
that their dimension satisfies a Ledrappier-Young type formula. To prove these results, we
adapt the approach from deterministic case of Feng [17].

For J C [d], define the partition &; of AV as

(3.1) E7(x) =&5(y) ifand only if wyI(z) = 7 00(y) for z,y € AN,

Note that &; = H_lelB(Rd) (mod 0).

Theorem 3.1. Let N € N. Let C be a partition of AN such that for z,y € AN, C(z) = C(y)
implies oy n = pyn- Let T' be a partition of AN such that for x,y € AN, z|N = y|N implies
I(z) = I'(y). Set T = oN and A = \/?iOT*’T. Let 1 < j1 < -+ < js < d and write
J ={j1,...,Js}. For 0 < b <s, set Jy, = {j1,...,58}. Then for B-a.e. y, B;‘-a.e. z and
0 <k<I<s, the measure WJZHBifJ’“ = WJZH(ﬂ;l)iJk is exact dimensional with

A '\ Hj - Hj
(3.2) dim 7y LB = P —y
b=k+1 Xiv
where for I C [d],
1 SR
A_
(3.3) HA = NH(ﬁ,C|A\/£[).

Theorem 3.1 has following consequence which is a general and detailed version of Theo-
rem 1.11.

Theorem 3.2. Forn € N, let C, be the partition of AN defined by C,(x) = Cn(y) if and only
if Ouln = Py for x,y € AN. Let N € N. Let T be a partition of AN such that for x,y € AV,
z|N = y|N implies T'(x) = T'(y). Set A = VL,0 VT, Let 1 < j1 < --- < js < d and write
J={j41,...,Js}. For0<b<s, set Jy ={j1,...,Jp}. Then for B-a.e. y, the measure WJHIB;‘
1s exact dimenstonal with dimension given by

s 1CGA 1 CA
(3.4) dimmyA=" u,

b=1 Xiv
where for I C [d],
(3.5) h$A = lim iH(ﬂ,an | AV E) =inf iH(ﬁ,an |AVE),
N n nN

n—oo N
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C,A C,A
and thq _th < xj, for1 <b<s.
We write dim A := dim 7jg.A by convention.

Proof of Theorem 3.2 assuming Theorem 3.1. For n € N write I';, = V', lo—iNT. Note that
A=VX,o o~ N1, for all n € N. Applying Theorem 3.1 with nN,C,n, s in place of N,C,T,
and taking £k = 0,1 = s, J = Js, it follows that for [-a.e. y, the measure WJHﬁ:;A is exact

dimensional with
s HC,A,n_ C,An

. Jp— Ji
dim WJHB;‘ = Z b1 : b
b=1 Xiv

for all n € N,

where for I C [d],
1 .
HSA = —H( C v ) :
e 7 B,Cun | AV E&r
For 1 < b < s, applying Theorem 3.1 with k =b—1,] = b, we have

C,An C,An
HJb 1 HJb

< Xy
. 'A7€ .
since 7, 113y » 1 g supported on II(z) + ijRd for S-a.e. y and Bf-a.e. T.

For m,n € N, it follows from C(,, 1 )n < Cruv VT ™" Cpn, A= (v?;olT_if> \/T_m./z7 Lemmas
2.1, 2.2 and 3.5(i) that,

H(ﬁac(m—l—n)N | Av é’AJ)

gH(ﬂ,CmN\/T_m nN\ﬁv@)

:H(,B,CmN\ﬁVEI)JrH( -m nN|fTv§[v§n7v>

= H(B,Con | AVE) + H(8,T7"Con | (VG TT) v T AV T v Gy )
<H(6 Con | Av&) +H(B, —me, o | T (ﬁvg}))

= H(B,Con | AVE) + H(B,Con | AVE).

(3.6)

This shows the subadditivity and justifies the limit in (3.5). The proof is finished by letting
n — oo in the above equations. O

The rest of this section is devoted to the proof of Theorem 3.1. For the remainder of this
section, we fix N,C,I',T, A as in Theorem 3.1. Without loss of generality, we assume J = [d],
since the general case can be reduced to this one by considering the IFS ®; as defined in (2.1).

3.1. The Peyriére measure. We begin by introducing a useful measure on € x AN. Recall
the definitions of Q, P, ¢, u® from Section 2.4. Define a Borel probability measure Q on § x AN
by

(3.7 | swaaq= [ | feods@ipe),
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for every bounded Borel measurable function f on € x AN. Under this definition, the phrase
“for Q-a.e. (w,x)” is equivalent to “for P-a.e. w and $¥-a.e. 2”. The measure Q serves a role
analogous to the Peyricre measure used in [15]. Next, define a transformation on Q x AN by

T(w,z):=(Tw,Tz),
for (w,z) € Q x AN,

Lemma 3.3. The system (2 x AN, Q,T) is measure-preserving and mizing.

Proof. For A € B(Q x AN),

Q(T'4) = /Q . 14(Tw, Tx) dB (z)dP(w) (by (3.7))
_ / 14(Tw, 2) dBT (2)dP(w) (by (2.10))
QJAN
_ /Q [ 14(w.2)d5*@)dP(w) (by TP = P)
= Q(A). (by (3.7))

Thus Q is T-invariant.

For U x I e I x (ANY™ V x JeT™ x (AN)™ mq,my > 1 and n > 2Nmq, we have

Q (([U] x [I])ﬂT "V D)

=Q((UINnT"[V]) x (TInT~"[J]))
- / o FINTL) APG) (by (3.7))
= / B“([I])BT"‘“([J]) dP(w) (by (2.7) and (2.10))
[UlNnT—"[V]
AL / (1)) dP (w) (by (2.6))
= QU x ) Q (V] x [J]). (by (3.7))
This implies that T' is mixing with respect to Q. O

Below is a direct consequence of Birkhoff’s ergodic theorem applied to (2 x AN, Q, T).

Lemma 3.4. For Q-a.e. (w,r) and 1 < j < d, lim,_oo —(1/n)log )\;?‘"N = Ny;.

3.2. Some measurable partitions. In this subsection we explore the properties of [}, A and
their associated conditional measures.

For 0 < j < d, we denote §; = §[;], II; = m[;1I, and for z € AN, r > 0, define
B (2,r) = {y € A: I(2) — W;(y)| < v} =10 B (W, 7).
For n € N, let CJ~ ! := V- T"C.
We begin with a lemma connecting &;, C and B (z, 7).
Lemma 3.5. For Q-a.e. (w,x) and 1 <i < j <d, the following holds.
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(i) &(x)NC(x) =T 2;(Tz)NC(x), and so &V C =TV C.
(i1) &-1(2) N BY (2, "™ ) nC(@) = T (&1(T2) 0 BY (T, 471N ) ) nea).
(iii) Fore € (0,1) andn € N withe™' < n, &_1(z)NCy(x) C BrI i(x,exp(—n(Nx; —¢))).
Proof. By (1.15),
(3.8) Painny TI(T"2)) =TI(x) for z € AN n e N.
For z € AN, n €N, a,b € R? and J C [d], since Ay, is a diagonal matrix, we have

(39) WJ(S%W(@) - (10$|n(b)) = §0$|n(7TJa) - Sox|n(7TJb)

Then for y € C(x), we have DN = Py|N, and so

y €&(w) = myll(x) = mp;1I(y) (by (3.1))
= 71PN TH(T2)) = 70, 8 L(Ty)) (by (3.8))
= mjpen I(T2)) = 7008 (IH(TY)) (by an = @yN)
= o (MT(Tx)) = gy (7;)TH(TY)) (by (3.9))
= w1 (Tr) = 7;11(Ty) (by ¢z n being invertible)
= yeT 'g(T). (by (3.1))

This proves (i).
For y € C(z), we have g n = ¢y, and so
y € &_1(zx)n B (m X”'"N)
= |y e) = )| < X5, m g T@) = )
= |mdl(z) - mIl(y)| < XY ay_gI(e) = ay_gI(y)  (by ) = mg_y + )
= 1o n((Tx)) — 700N (TH(Ty))| < )\xlnN (by (3.8) and pzn = ¥y N)
mj—yIl(Tz) = 7 (Ty) (by (i)
NN | (T — myTI(Ty) | < AN,y T(T) = g T(Ty) (b (3.9))
[ (Tx) — mT(Ty)| < A717ON oy yT(Tw) = m;_y T(Ty)
| IU(Tz) — g TL(Ty)| < AN s I(Tw) = oy T(Ty)
ye T 1BW (T:z, A?‘(”*“N> NT~'¢;_1(Tx).

IHHHI

This gives (ii).

Finally, we prove (iii). By Lemma 3.4 and xy > x;, we have for Q-a.e. (w,z) and i < /¢ < j,
(3.10) )\?lnN <exp(—n(Nx;—¢e/4)) <exp(—n(Nx; —e/2)).
Let y € Cg_l Né&i—1(x). Then ¢, N = Pgjpn and m;_yll(z) = m;_y11(y). Hence

| () — mp;T(y) |
ZWH — 7 d1(y) (by 7y I(x) = 7y (y))
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J
= Zﬂf (‘Pm|nNH(Tn$) - Sox\nNH(Tny)) (by (3 8) and PylnN = pr|nN)
=i

J
<SP (by diam(Kg) < 1)
< exp(—n(Nx; —¢)). (by (3.10))
This shows that y € BYWi(z,exp(—n(Ny; —¢))). O

Next, we establish the relation between the conditional measures By L (6“’)% and ,BTx witi,

Lemma 3.6. For Q-a.e. (w,z), 1 <j <d and A C B(AY),

vty gy _ B (TTANC(@))
BTZE ( ) - wé’] :
Bz (C(z))
Proof. First we show that
WTGVC (-1 y) = B (5W, Lpoy | T7Y v c) () (by Theorem 2.3)
—E (5‘*’, 114 T—léj) () (by Lemma 2.1(vi))
(3.11) R
- E(BT“’ 1, gj) (Tz) (by Lemma 2.1(i) and (2.10))
= ﬁTx ’gj( A). (by Theorem 2.3)
By Theorem 2.3, for B-a.e. z we define
29T ANC(e
ve(T7A) = (T e =) 1p(=
5$ j(c( BeC

where hp = R A} 7 “1p ¢.). Since B is £ measura e, the function
h h E(8° 1r-14nqp &) /E(BY 1B |E). S h &; ble, the fi

v v (T71A) is §A] V C-measurable. Moreover,

/yx( T1A)dg” = Z/lBthﬁw

BeC
=3 [ (5 1t | &) a5°
BeC
(3.12) = Z / ﬂw 1p | fj hB dg” (by hp being gj—measurable)
BeC

= Z / B Lp-14qB | fj) dg” (by the definition of hp)
BeC

_Zﬁw T'ANB) = (T71A).

BeC

Hence, the uniqueness of conditional expectation implies that
vo(T74) = B(5%, 1714 | § v C)
= E<B‘”, 114 | T_lgj Y 5) (by Lemma 3.5(1))

18



_ ;J,T §JVC<T—1A)_ (by Theorem 2.3)

This together with (3.11) finishes the proof. O

Then we compute some useful integrals related to the conditional information and entropy.

Lemma 3.7. Let £ be a finite partition of AN, and let F be a sub-o-algebra of B(AY). Then

(3.13) /QXANI(ﬁ‘”,E | F) (2)dQ(w, z) = H(ﬁ,é‘ | AV f) ,
and
(3.14) /QH(B‘“,S | F) dP(w) = H (8.6 | AV F).

Proof. Since (AN, B(AY), B) is a separable probability space, there exists a sequence of countable
partitions (F,)%; of AN so that Fn 1 F. Note that for any sub-c-algebra G of B(AY),

n=1

[ 16%.€16) @) dQ. o)
QxAN

(3.15) - /Q H(8*,€ | G) dP(w) (by (3.7))

(3.16) - / H(BA,€ | G) dB(y) (by (2.8))
/ / (B2.€ | G) (z) dBA(2)dB(y) (by (2.4))
AN JAN

= [ [ 1EAE 19 @ast@ast) oy st = 5 it e € Aw)
eI = [ 188 10) @) (by (2.8))

Since (3.14) follows from (3.13) and (3.15), it suffices to prove (3.13).
For each F € £, n € N, S-a.e. x, by Theorem 2.3 we have

. A
B3 16 | 5 o) = P = 3 1

Bi(Fn FeF,

where hp(z) = E(ﬁ, 1par | ,Z) /E(ﬁ, 1r | ﬁ). Then z + E(ﬁ;;\, 15 | fn) (z) is AV F,
measurable. This together with the computation in (3.12) shows that

(3.18) B(8 12| F) (1) =B(8,1 | AV F,) (2).
Hence

/ 1(5%,€ | ) (z) dQ(w, 2)
Qx AN

_ /A H(BLE | F) dB) (by (3.16))
:/ lim H(ﬁy LE|F ) dp(y) (by Lemma 2.1(viii) and #& < 00)
AN =00

= lim | H(BA.€ | Fa) dB(y) (by #€ < o0)

n—oo
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= 1im [ 1(81,€ | 7o) (@) dB(x) (by (3.17))
AN

n—oo
ZHIL%H(B 5!Av]—") (by (3.18))
= H(B,E | Av ]-") , (by Lemma 2.1(viii) and #& < o0)
which finishes the proof. U

We finish this subsection with the a version of Shannon-McMillan-Breiman theorem.

Lemma 3.8. For Q-a.e. (w,x) and 0 < j <d, lim, o, —(1/n)log Bf’éj CyHx)) = NH?]

Proof. For n € N, we have

1(8 Vi TC | §) (@)

—1 (5w C| @) ( NIITC | & v 5) () (by Lemma 2.1(iv))

=1 (BW, C| gj) (5 NS TTiC | T v 6) (z)  (by Lemma 3.5(i))

—1 (5&), C| EJ) ( viir-ic | T*lg}) (z)  (by Lemma 2.1(vii))

—1 (ﬁ“’, C| gj) + 1(5“ VI2TiC | EJ) (Tz).  (by Lemma 2.1(ii) and (2.10))
Then an induction shows that
(3.19) I(8, Vi T7C | §) (2) = :Z_:I(ﬁ?“’“w,c &) (TF).

On the other hand, it follows from Theorem 2.3 and (2.3) that for Q-a.e. (w,x),
(3.20) —log A% (€M (@) = L(B*, VISITTIC | §5) (@),
By (3.19), (3.20) and (3.13), applying Birkhoff’s ergodic theorem finishes the proof. O
3.3. Transverse dimensions. The aim of this subsection is to prove Proposition 3.9, which
intuitively provides the local dimension of p“ along each coordinate.
Proposition 3.9. For Q-a.e. (w,x) and 1 < j <d,

wW,Ei_ . A A
o log B2 (B (@) _ By — H
r—0 logr Xj

where Hf' is defined in (3.3).

)

The proof of Proposition 3.9 is inspired by [17, Proposition 5.1]. The key idea is to reformulate
the measures of small balls in terms of certain variants of Birkhoff sums. The proof is then
completed by applying Birkhoff’s and the following Maker’s ergodic theorems [38].

Lemma 3.10 (Maker [38]). Let T be a measure-preserving transformation on a probability space
(X,B,0). Let (gn)32, be a sequence of measurable functions converging 0-a.e. to g. Suppose
sup,,|gn| < f for some f € LY(X,B (9). Then both 0-a.e. and in L',

hm—Zgn kTHC E(0,9|7)(z)

n—oo n
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where T = {B € B,T"'B = B}.

The following lemma is a preparation for applying Lemma 3.10.

Lemma 3.11. For Q-a.e. (w,x) and 1 < j <d,

w,&j—1 I;
(3.21) lim — log Bt (B (2, r)NC(x))

=1(p%,C|é& '
r—0 ﬁ;%ﬁjﬂ (an ($7T)) (5 ‘ 5]) ()

Furthermore, set

w)&j—l 11
x B , ﬂC
o(w,7) = — inf log = wf_( (z,1)NC ()
=0 B (B (, 7))
Then g > 0 and g € LY(Q x AN, Q).

Proof. Applying [17, Lemma 2.5(2)] with AN,W[j}Rd,ﬂm,ﬁw,C,fj_l in place of X, Y, 7w, m,a,n
gives
297 (BT (2,1) NC(x))

lim —lo =I(p“C Vv E ) (2)

S g 6;,&.71 (an(x,r)) ( 1€V E; 1)( )
This implies (3.21) since &j_1 < §;. The last statement follows from the second part of [17,
Lemma 2.5(2)] and H(8%,C) < Nlog|A| for all w € Q. O

We are now ready to prove Proposition 3.9.

Proof of Proposition 3.9. The proof is adapted from [17, Proposition 5.1]. For clarity and to
account for the dependence on w, we provide the details in full.

For n € N, define

6 (510 (3, 7))
ﬁ;:,éjfl <an (Tx, )\?ﬂﬁ\(n—l)N)) '

Then by telescoping and diam(supp u) < 1,

(3.22) H,(w,x) =log

n—1

(3.23) Zank(Tk(w,.%')) — log g5 (an (3:7 /\;c\nN» '
k=0
For n € N, define
w&i=1 (B (5 22"V ¢
(3.24) Go(w, ) = log < j (a: y ) N (x))

6 (5 ()
For 1 <5 < d, write

(3.25) Qi(w,) =1(8*,C | §) (@)

Then Lemma 3.11 implies that sup,,|G,| € L'(Q) and for Q-a.e. (w,z),

lim G, = —Q;.

n—oo
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Thus for Q-a.e. (w, ), combining Lemma 3.10 and Lemma 3.7 shows that

n—1

(3.26) lim ;ZGn k(T (w, ) / Q;dQ = —NH,

and by Birkhoff’s ergodic theorem,
.1
(3.27) nh_)n(f)lo - Zijl(Tk(W@)) = NH?_”,

Next, we show that for n € N,
(3.28) H,=-Q;j1—-G
This is justified as follows,

H,(w,z) + Gp(w,x)

B9 (B (2, X5 ) ne(w))

~ log %& 1 (BH T AT )) (by (3.22) and (3.24))
g T GO B @ STINCE) <y
Tt (BHJ'(Tx, ALzln—DN )) ’

G297 (771 (g1 (T2) N B (T, 70 ) () )

= log — . = (by Lemma 3.5(ii))

reE- <an(Tx’Aj (- DN )>

“ 1o Erl (T‘lB“uTx TN AT (T N () ) (b .

T (e ) .
g (17 B (e AN N () ne(e)) |

= log 5Tz’§ﬂ - <BH — )\Tz|(n N )) (by Lemma 3.5(1))
g (1B (T, AT IN) () e

= log et <an T AJTC‘K"*”N)) (by Bz (§-1(2)) = 1)

= log 85 (C()) (by Lemma 3.6)

- —1(5w,c | gf_l) () (by Theorem 2.3 and (2.3))

= —Qj_1(w, ). (by (3.25))

Finally, for Q-a.e. (w,x), we have

_log B (B (x, 7))
lim
r—0 log r

~ log Bf:’éj*l (BHJ‘ (z, )\;C'nN)>
log A;

(by Lemma 3.4)
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P Hy k(TR (w, 7))

= lim (by (3.23))
n—00 log )\;?WN
n—1 k n k
(T Gr_1(T"(w,
A
- Hp_y —H
= lim ————. (by (3.26), (3.27) and Lemma 3.4)
This finishes the proof. U

3.4. Proof of Theorem 3.1. In this subsection, we prove Theorem 3.1 by adapting the argu-
ments in [17, Section 6], which is itself inspired by ideas from Ledrappier and Young [37].

For 1 <i < d, denote

A 1A
(3.29) 0 = M
Xi

Using Proposition 3.9, it follows that for Q-a.e. (w,z),

1 w,&i—1 BHi
(3.30) 9, = lim 1085 (BR(@: 7))
r—0 logr

For Q-a.e. (w,z) and 0 < i < j <d, define

log B¢ (B%i(z,r)) log B¢ (BWi(z,r))
W L W e
(3.31)  Fii(x) = llIiljélp Tog 7 and Vo= llgl_)l(r)lf g7 .

We claim that the following three statements hold for Q-a.e. (w, z):

(D1) Tyi(2) =5 (@) =0
(D2) Xi (Tii1,j(@) = 7i(2)) < Hﬁ,” - Hf;l] for 1 <14 <j.
(D3) V@) + 0 < (x) for1<i <

Proof of Theorem 3.1 assuming (D1)-(D3). Combining (3.30), (D2) and (D3) shows that if

Wj <$) = 1;‘;]‘

(3.32) 7 @) ST () < A () + 0 =92 (@) + 6 < | (o).

(x) = %w](x) for some ’y;"J(m) € R, then

Thus 1211,]'(56) =771 () =7 ;(z) for some ¢ | ;(z) € R, and so

(3.33) Yty (@) =755 (x) + Vi

By (D1), an induction from i = j shows that (3.32) and (3.33) hold for all 1 < ¢ < j. Hence
J Jj HA _ HA

(3.34) iy =Y 0=y LM fer0<i<

t=it1 (=it1 Xt

Note that for Q-a.e. (w,z) and r > 0,
ﬁ;j’gi (BHj (x,r)) = (W[j]Hﬁ;(:’&) (B (W[J]H(l’),T)) .

23



This together with (3.31) and (3.34) shows that for Q-a.e. (w,z) and 0 < i < j, the measure
W[j]Hﬁg Si is exact dimensional with

_HA

A
i 0

=)

J
(3.35) dim 1A% = Y v

(=i+1
This proves Theorem 3.1 when J = [d]. For general J C [d], the proof is finished by considering
® ; instead. O

It remains to prove (D1)-(D3).

Proof of (D1). Since &(x) = Hj_l(l'[j(:v)) c BYi(z,r) for every x € AN and r > 0, we have

1> 875 (B (2,r)) > 655 (&(x)) = 1.

Thus 7¢;(z) = lf](x) =0 for Q-a.e. (w, ). O
The proof of (D2) and (D3) relies on the next lemma showing that a set with positive measure
has positive density with respect to conditional measures almost surely.

Lemma 3.12. Let w € Q and A € B(AY) be with f“(A) > 0. Then for 0 < i < j < d and
[Y-a.e. x € A,
B (AN BY (2, 1))

im 3 > 0.
0 (BT a,r)

Proof. Applying [17, Lemma 2.5(1)] with AN,W[j]Rd,ﬂ'[j],ﬁw,c,fi in place of XY, m,m,a,n
shows that for f“-a.e. z,
85 (AN BY (z,1))
(BT 2, r)
The proof is completed by an almost trivial property of conditional expectation that, for a
probability space (X, B,6) and a sub-o-algebra F of B, letting A € B be with §(A) > 0, we
have

—E(5*, 1416V E) (@),

E(@,14|F)(x) >0 for f-ae z € A.
(See e.g. [19, Lemma 3.10] for a proof.) O

Now we are ready to prove (D2) and (D3).

Proof of (D2). For 0 < i < j, write h; := Hﬁ] for short. Suppose on the contrary that (D2) is
not true. There exists 1 <4 < j and U C Q x AN with Q(U) > 0 such that for (w,z) € U,

hi—1—h;
T » L < ’Y(z{il,j(x) —’Yi,j(x)-
KA

(3.36)

It follows from (3.36) and (3.31) that U is a subset of the following set,

U U ﬂ{(w7x):w<%—1—%—a7

a€Qn(0,00) ¥;—1,7,€EQe>0 i

(@) > Fr — o2, 7% (@) < i + 5/2}.
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Then there exist o > 0 and real numbers 7,_;,%; such that

hi—1 — h;
(3.37) L <FL -Ti— o
Xi
and for & > 0 there exists U. C U with Q(U;) > 0 so that for z € U,
(3.38) Vi1 () > 721 —€/2, ¥ij(r) <7; +¢/2.

Fix € € (0, x;/3). There exists ng: U. — N such that for Q-a.e. (w,x) € Uz and n > ng(x),

(1) B2 (B (2, exp(—n(Nx; — 2¢)))) > exp (—n(Nx; — 2¢)(F; +¢));  (by (3.31))
(2) B (Cg_l(x)) < exp(—n(Nh; —¢)); (by Lemma 3.8)

(3) gt (Cy ' (x)) > exp (—n(Nhi—1 +¢€)); (by Lemma 3.8)

(4) &-1(z)NCyH(w) € B (z,exp(—n(Nx; — 2¢))).  (by Lemma 3.5(iii)).

Take Ny such that
A= {zx € U.: no(z) < No}

satisfies Q(A) > 0. By (3.7) there exists € Q with P(Q) > 0 such that for each w € Q there
exists X¥ C AN satisfying {w} x X* C A and $“(X%) > 0. Lemma 3.12 implies that for some
¢ > 0 and each w € €, there exists Y¥ C X* with B¥(Y*) > 0 such that for z € Y there exists
n =n(w,z) > Ny satisfying,

(5) Besi (LNX¥) > cBs (L), where L = B (z,exp(—n(Nx; — 2¢)));
(6) ﬁf’gi*l (BHJ' (z,2exp(—n(Nx; — 25)))) < exp (fn(NXZ- —28)(F;_1 — 8)); (by (3.31))
(7) log(1/c) < ne.

Take w € Q and z € Y¥ such that (1)—(7) are satisfied with n = n(w, ). By (5) and (1),
Brs (LN XY) > efy%(L) > cexp(—n(Nxi7; + O(e))).

For each T € Cy~" with IN&(z)NLNXY # ), there is y € X such that I = CJ~'(y) and
&i(y) = &(x). Thus, (2) implies

BS (1) = 8% (€3~ (y) < exp(—n(Nh; —¢)).
Hence, by &;(x) C &—1(x), combining the previous two equations gives

#{1 ey Ing 1(x)NLNXY # @}

> #{I eCrl In&(z)NLN XY @}
> cexp (n(N(hi — xi7v;) — O(e))) .

On the other hand, for each I € CJ™! with IN&_1(x)NLNXY # (), there exists z €
Iﬂfi_l(ﬂj)ﬂLﬂXW. Thus,

&i-1(x) N1 = &-1(2)NCT (2)
C B (z,exp (—n(Nxi — 2¢))) (by (4))
c BYi(z,2exp (—n(Ny; — 2¢))). (by z € L)

25



It follows from (3) that
BEETN (1) = AL (G (2)) 2 exp(—n(Nhyo1 +€)).
Hence
Bf’fi*l (BHJ' (x,2exp(—n(Ny; — 25))))

> #{I eCy i INg 1(x)NLNXY £ @} exp(—n(Nhi—1 +¢€))

> exp (logc+n (N(h; — hi—1 — xi%i) — O(¢€))) -
From this, (6) and (7) it follows that

—NX¥;—1+ O(g) > N(hi — hi-1 — xi7;) — O(e).

Letting ¢ — 0 and dividing by N give h;—1 — h; > x:(7,_1 — 7;), a contradiction to (3.37). O

Proof of (D3). Suppose on the contrary that (D3) is not true. Then there exists 1 < i < j and
U C Q x AN with Q(U) > 0 such that for (w,z) € U,

v (z) + 9 > Y (x).

—J —i— 17]

Then there exist a > 0 and real numbers . ,,7, | such that
(3.39) vtV >y, o
and for every € > 0, there exists U. C U with Q(U) > 0 so that for (w,z) € U,

(3.40)

lf_l’j(:r) - 11;—1‘ <e/2 and

Z:Jj(x) -, <e/2

Let 0 < ¢ < a/4. By Egorov’s theorem, there exists A C U, with Q(A) > 0 and Ny € N
such that for (w,z) € A and n > Ny,
(3.41) B (B (2,2 exp(—n))) < exp (—n (lz- - 5)) .

By (3.7), there exists Q € Q with P(Q) > 0 so that for each w €  there exists X¥ c AN
satisfying {w} x X“ C A and ¥(X%) > 0. Lemma 3.12 implies that for some ¢ > 0 and each
w € Q, there exists Y C X% with B¥(Y¥) > 0 such that for x € Y* there exists N1 > Ny so
that for w € §~2, z €YY and n > Ny,

(3.42) B (XY N B (2, exp(—n))) > ¢855 " (B (z, exp(—n))) -
Then
Bt (B (2, exp(—n)))
< e 1B (X9 N B (2, exp(—n)))

(3.43) <t . B (XN BY (z,exp(—n))) A1 (y) (by §i—1 < &)

= / B (X2 0 B (z,exp(—n))) dBe (y),
BUi(z,exp(—n))
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where the last inequality holds since combining y € &_1(x) and &(y) N X N B (2, exp(—n)) #
0 implies y € BYi(z,exp(—n)). To see that, take z € &(y) N X¥ N BWi(x,exp(—n)). Since
;(2) = TL;(y) and 7} 1L; = II; by 7 < j, we have
Mi(y) = Ii(2)[| = [[i(2)) — i) < |[TL;(2) = ILi(2)]} < exp(=n),
which implies y € B (x, exp(—n)). Moreover, it follows from z € BYi (z,exp(—n)) that
BYi(z,exp(—n)) ¢ BYi(z,2exp(—n)).

Hence,

By (X2 0 B (2, exp(—n))) = f2% (X* N B (z, exp(—n))) (by &if2) = &i(v))
< 2% (B (2,2 exp(—n)))

< exp <_”(li - 5)) . (by (3.41) and z € X*)
Combining this with (3.43) shows that for w € Q and z € Y¥,
gt (BHj (z,exp(—n))) < exp (— log e —n(y, — g)) gt (BHi («, exp(—n))) .

By taking logarithm, dividing by n and letting n — oo, we have 1‘:—1,]‘ (z) =27, —e+U;. Then
applying (3.40) shows

Yiq > 7+ ¥; — 2e.
Letting € — 0 gives 7y, | >, + ¥;, a contradiction to (3.39). O

4. THE DISINTEGRATIONS WITH RESPECT TO LINEAR PARTS

In this and all the subsequent sections, we fix N € N and let T be a partition of AN so that for

z,y € AN, z|N = y|N implies I'(x) = I'(y), which in turn implies A =A Specifically,

Px|N Py|N -~

(4.1) L=<T < {[]:TeA"},

where L is the partition of AN deﬁped by L(z) = L(y) if and only if Apyy = Ap, v forz,y € AN,
We set T = o and A = V2T 'I'. Recall the definitions of Q, P, %, u“ from Section 2.4. In
this section we introduce some properties of A and the associated random measures.

We begin with some notations. For w € 2, where w = A(z) with 2 € AN, and n > 0, define

A= 4 and A7 = (A%n)TL

- Px|lnN

This is well defined since, by (4.1), it is independent of the choice of x. For 1 < j < d, let the
j-th entry on the diagonal of A" be denoted by A;.Jln. Define

In wln
i

win | | 4wln
= |

and X;) = —log A
Let rmin == min{|r; j|: 1 <1i,j < d} and ryax = max{|r; j|: 1 <i,j < d}. Then

(4.2) e < X<l for 1< j < d,

The following lemma is a direct consequence of Lemma 3.4, (3.7) and Egorov’s theorem.
Lemma 4.1. Forn € (0,1) there exists Q C Q with P(Q) > 1 —n so that for w € Q and n € N

with ! < n, we have X?'” —nNx;| <nn for1 <j<d.
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The random measure p“ exhibits a convolution structure. For w € 2 and n > 0, define

v =Y B([u])d,,0)-

uc AN

Since A, = A% for u € A" with 8%([u]) # 0, it follows from (2.13) that
(4.3) P = v A9 T

)

where Af denotes the pushforward of a measure 6 by a matrix A.

4.1. Nonconformal partition. Fix w € Q. Following [46], we define the nonconformal par-
titions used to analyze the entropy growth of u*. For n € Z, let Dg be the n-th level dyadic

k 1\¢
D= > 100, —) :kecz®}.
b o) wene)

For t € R, define Df = th I We omit the superscript d when the ambient space is clear from
the context. For w € Q and n > 0, define

partition of R?, that is,

d
(4.4) £ = A“"Dd = {A“"D: D e D} = X "D},
j=1

It follows that

(4.5) A“‘%;lggb“ =n,'€%, forb>0and JC [d],
and
d
(4.6) &Y and X D}lcwm are O(1)-commensurable.
j=1 %

For y € R?, we define the translation map Ty(zx)=x+y, o€ R?. Tt is readily checked that

(4.7) &Y and szlﬂjlgﬁ are O(1)-commensurable for .J C [d] and y € R%.

Next, suppose f, g are two maps from a set X to R? such that for some C' > 1,
|7 (f(z) —g(x))] < C)\;f)m for1<j<dandx € X.
Then
(4.8) flnteY and g tn €Y are O(Cd) -commensurable for J C [d].
Combining (4.3), Lemma 2.2(iii) and (4.7), we obtain the following inequality for m,n > 0,
(49) H (i, €5, | £2) > H(uT™ 1) — 0(1).

This estimate is the major advantage of considering p“ and £¥.
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4.2. Component measure. Fix w € . We introduce the component measures along &Y.

Given 6 € M(RY) and n > 0, let 0, , be a measure-valued random element such that 63, =
Ogw (z) With probability 0(&, (r)) for x € RY. Thus, for a event U C M(R?),

P{0s, €U} =0 {z € RT: By € U}

We call 0, an n-th level component of 6 given w € Q and z € R, For x € R? with (¥ (x)) > 0,

we write 6, in place of fgw(,) even when no randomness is involved. Thus, for n > 0,

(4.10) o / 6 do(x).

We can also choose a random scale n uniformly from a range. For example, for a finite set
I C N, define

1
Let E and E,;c; denote the corresponding expectation with respect to P and P;c;. Thus, for
each bounded measurable function f: M(RY) — R and n > 0,

Bin(162)) = [ F65p000) d0(o).
In particular, for k,n > 0,
(4.11) H (0,651 | €5) = Boma (H (05, 654))

We finish this section with the a useful lemma relating the entropies of a measure and its
components. The proof is almost identical to [26, Lemma 3.4] and is therefore omitted.

Lemma 4.2. Let § € M.(R?) with diam(supp ) < R for some R > 1. Then for all w €  and

every 1 <m < n,

1 w 1 o ow m + log R
EH(H, EY) = Ei<q<n <mH(9$7q, 5q+m)) +0 <n)
1 © w m + log R

5. ENTROPY OF REPEATED SELF-CONVOLUTIONS

This section is devoted to proving the following proposition, which is analogous to [46, Propo-
sition 1.15] for the random measures. It plays a crucial role in establishing the entropy increase
result. The proof is adapted from [46]. To account for the dependence on w and other additional
parameters, based on the dynamics on (£2,P) we adapt the arguments to prove the modified
version of the statements. For clarity, we provide the necessary details.

Proposition 5.1. For e € (0,1), there is § > 0 so that the following holds. Let n € (0,1) and
mi,...,mg,ki,....,kg €ENbewithe ' <l <mg<hkg<<mg1 < < ky <my < k.
There exists Q C Q with P(Q) > 1 —n so that for n € N with k1 < n and w € Q the following
holds. Let 0 € M.(R?) with diam(supp6) < e~' and 2H(0,E%) > . Then there exist j € [d]
and Q¥ C [n] with #,(Q%) > § so that

1 *K 4 w w — w w
(5.1) o (9 K ES  | E w{d}l\{j}gﬁmj) > Ny;—¢ forqe Q¥
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5.1. Entropy of self-convolutions under a condition on variance. The purpose of this
subsection is to prove the following lemma, which is analogous to [46, Lemma 3.2].

Lemma 5.2. Letn € (0,1) and m,?, k € N be withn™' < m < £ < k. There exists Q1 C Q with
P(Q) > 1—n so that, forn € N withk < n and w € Q, there is B® C [n] with #,(B*) > 1—n so
that the following holds. Let 01, ...,0, € Mc(RY) be with diam(supp 6;) < n~' for1 <i < k. Set

= 01 % x0. Suppose that there exists 1 < j < d so that Var(mjp) > nk and Var(myp) < n~?
for 1 < j' < j. Then setting a := |logk/(2Nx;)|, we have for w € €,

—H(p, a+m|54T“’\/7T > Nyx;—n forbe B”.

i)
Proof. The proof is adapted from [46, Lemma 3.2]. To account for the dependence on additional
parameters, we include the details for clarity. For 1 < j < d, the coordinate map from R% to
R is denoted as 7j(x) = (z,e;) for # € R%. After a translation of p, by Lemma 2.1(iv) we can
assume that the mean (7;p) = 0 for 1 < j' < d and supp6; C [-n,n]¢ for 1 <i < k.

Let ¢ € (0,1) be with n7! < 7! < m. By Lemma 4.1 and the T-invariance of P, there
exists  C Q with P(Q) > 1 —&/2 so that for w € Q and 1 < j’ < d,

wla

(5.2) ff)gk - ;;; < e, ‘Xw‘ (tm) —(l+m)Nxjy| <e,
and
(5.3) ‘X?Mm - mNXj‘ < me.
In what follows we take w € Q.
We first show that
(5.4) L H (A | C7) 2 N = 1

where C¥ := & V L)\ {j}gﬁm' The proof of (5.4) is based on the Berry-Essen theorem. Next,
we estimate the moments of corresponding measures. For 1 < i < k and s = 2,3, it follows
from (5.2) that

(5.5) / It} diF; A%190,(t) = exp (—SX;"“) / It]° d7;0:(t) = o(n—%—s/“%) .
Thus, the variance satisfies
k
Var(%jA“"“p) = ZVar(%jA‘”'a&i) =0(n k™).
i=1
Moreover,
Var(%jA“’lap) = exp (—QX;)‘G) Var(7;p) > nk~%.

Hence

iy JItP A7 AL 0(t) 0 (o215
Var(7;Awlap)3/2 7 '
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Combining all above with e™! < m < ¢ and [46, Theorem 3.1 and Lemma 3.3], we conclude
from Lemma 2.2(iv) and (5.3) that

1
H( 7 A%, D D!,
mN x; (J P X?|Z+xf£“‘m‘ xj‘é

1
> ~ pwla 1 1 .
- mNXjH<7TJA P Dx}“‘eerNxJ' ’Dx}w> Ofe)
>1—e—-0() >1-0(¢).
By (4.6) and n~! < ™!, this proves (5.4).
We proceed to estimate the error caused by = in (5.4). For j' € [d] \ {j}, set

Sy = {x c R%: ‘Wj/A‘“l“m

< exp (=2Nxa(l + m))} ,
and define S := Mg 53 Sy For z € 9,

‘Awmx — WjA”‘“x

= O(exp (—2Nxq(£ +m))) .
Hence by (5.2) and (4.8),

(5.6) H(Aw|ap5,€2"+m | C‘”) - H(WjA“’ng,Serm | cw) +0(1).
For j < j' < d, it follows from (5.2) that

k
Var (7 A*%p) = exp (*2X;j|a> ZVar(%jzei) — 0<n—2k1—xj//xj+2a> .
=1

For 1 < j’ < j, it follows from Var(m; p) < n~! and (5.2) that
Var(%j/A“"“p) <nlexp (—2X;.J,|a) =0 (n_lk_xj’/Xj+25> .
Recall that x; < -+ < xq. By n7! < €71, there is § > 0 only depending on 1, ..., x4 so that
Var(iy A9) = O 4%) for ' € [d]\ {7},
From this, since the mean (7;p) = 0 for j' € [d], and by Chebyshev’s inequality,

p(8)< ST a8 < S exp(ANxa(l + m)) Var(FyA“lp)
(5.7) 3 €ld\{j} Jeld\{j}

— O (exp (ANxa(t +m) k7).
By supp 7rjA‘“|a,0 C [~kn7t, kﬁ_l]d and (5.2),
H(WjA“"“psc, 57+m) = O£ + m + log(kn™1)).

From the above two equations, it follows from 1! < m < ¢ < k that

IO(SC) a w n

(5.8) S H (A0 B | €7) <
Hence

1

2 wla w w

mH<A pag€+m|c )

> P(S)H(Aw\apS’gZim | cw) (by Lemma 2.2(iii))
m
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p(S) w w | ow 1
> 0 (a0 s, | ) ~ 0 (by (5.6))
p(S wla,, cw ow) " -
Z;WL)H(W;'APSfumC)—LL (by 77" < m)
p(S* wa, . ew ew) "
+ 25 (a1 04) -1 (by (5.8))
1 wia w w 3 e
> EH<7TjA lap, Em | C ) =47 (by Lemma 2.2(iii) and (5.7))
> Nx; —n. (by (5.4))
By (4.4) and (4.5), this implies that
1
EH(Pa —atm | €0 }\{j}gé a+m> > NXxj =1

Since P(Q) > 1 —¢/2 > 1—-17/2 and a = O(logk) < n, the proof is finished by applying
Birkhoft’s ergodic theorem and Egorov’s theorem to 1g. O

5.2. Positive entropy implies nonnegligible variance. Based on Chebyshev’s inequality
and (4.2), the proof of the next lemma is almost identical to [26, Lemma 4.4] and so omitted.

Lemma 5.3. Let ¢,6 € (0,1) and m € N be with ! < m < §7'. Let 6 € M(R?) such that
diam(supp 0) < e~ and Var(m;0) < 6 for each 1 < j < d. Then LH(0,£%) < e for w € Q.

The following lemma is analogous to [46, Lemma 3.5, providing a nonnegligible proportion
of components with positive variance based on the assumption of positive entropy. The proof
is nearly identical to that of [46, Lemma 3.5], based on Lemma 5.3, and is therefore omitted.

Lemma 5.4. For e € (0,1) there exists 0 > 0 so that the following holds. Let n € N be with
l<n. Letw € Q and § € M (R?) be with diam(suppf) < e~ and LH(0,E%) > . Then
there exists BY C [n] with #,(B“) > ¢ so that

Pl:b{Var(ij_"J'iQ;i) >0 for some1 < j < d} >0 forbe B,
5.3. Proof of Proposition 5.1. Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. The proof is adapted from [46, Proposition 1.15], with Lemmas 5.2
and 5.4 in roles of [46, Lemmas 3.2 and 3.5], respectively. To account for the dependence on
additional parameters and for clarity, we include the necessary details.

Let 6 € (0,1) and ¢4,...,¢4 € N be with
(5.9) el il nlcsmg<<ly<bg<me < - <hkyg <m <l <k < n.

Define I;:v = L5kj/(2d)j for 1 < j <d. By {; < kj and 6! < kj, we have {; < l% Let ng:=1n

and 7); =kl for1<j<d. ThennjSnandnj_1<<mj<<€j<<k~j<<nfor1§j§d.

j+1

Let Q be the intersection of the Q’s obtained by applying Lemma 5.2 repeatedly with
n;,mj, ¢, k; in place of n,m,f,k for 1 < j < d. Note that k; < n for 1 < j < d. For
w € Q, let B be the intersection of corresponding B“’s obtained by applying Lemma 5.2 with
n in place of n. Then P(Q2) > 1 — dn and for w € Q, #,(B¥) > 1 — dn. In what follows we
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take w € Q, and let B¥ C [n] accordingly. By Lemma 5.4 and e~ ! < 67! < n~!, there exists
B” C BY with #,(B”) > § — dn > 6/2 so that for b € B”,

Pi:b{Var(ﬂjA*“"bQ;i) > ¢§ for some 1 < j < d} > 4.
For 1 <j <d, let B;V be the set of all b € B” so that
IP’Z-:b{Var(TrjA*w”Q;i) > n; and Var(wj/AfwliH;j’i) <npjfor1<j < j} > 0/d.

It is clear that B C U?Zl BY. Since #,(B”) > /2, it follows that #n(BY) > §/(2d) for some
1 < j <d. Fix such j until the end of the proof.

Note that
el <<77j_1 <m; </l <Lkj<n and 7y Skj_l for 1 < j < j.
Let b € B} be given, and define
Y = {z ¢ R%: Var(WjA*w‘bG‘;’ ) >n; and Var(my A~ wlbge ) <mye for 1< j" < j}.
Recall ij = [0k;/(2d)], and write k = k:]- for short. Set
Z = {(:Ul,...,xkj) e RN #{1<s<hj:a, €Y} > k:}
Since O(Y) > 6/d and 6~ < kj, the weak law of large numbers implies *%i(Z) > 1 — 4.

Let (:cl,...,a:kj) € Z be given. Then there exist integers 1 < s; < --- < 5, < k; so that
x5, € Y for 1 <i < k. Note that

diam (suppA wlbgew ) =0(1) forl1<i<k.

Ts;,b

Set
p = A_wlbﬁgjspb ook ATI0GY

:Esk,b

We have
Var(m;p) ZVar j A_wlbﬁ‘;:’s_,b) > knj,

and for each 1 < j’ < j, recalling k = k:j = [0k;/(2d)],

k
Var(ﬂj/p) = ZV&I‘(?Tj/AiLU'b@‘;Si’b) < kT]j/ = O((Skjnj/) <1

i=1
Recall the definition of B* and BY. Set a := [logk/(2Nx;)]. It follows from Lemma 5.2 that
1 by, w
(5.10) EH(;), Ty | ER S h L ER ) > Ny; -8 forbe BY.

J

For s € Z and b > 0, write CT Y= 55+£ oV }\{j}é’sM —a+m, for short. Since (5.10), k < k;

and 61 <« m;, we conclude from (4.7) and the concavity of entropy that for b € B;-",

1 .
—H(*];J:lA “lge & . |CE ) > Ny; — 26,

m;

Then by (4.5),

(5.11) mJH< ew bagb—f—f'—a—i-m | Cb) > Nx; — 30.
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Note that by (4.10),
o — /*];ilﬁgs,bdemj(xl,...,xkj).
From this, concavity of entropy, (5.11) and §*%i(Z) > 1 — 6, it follows that for b € BY,

1 ks _
7H<0 kjvgl;u-i-éj—a-;-mj ‘ ggj-i-ej—a v W[d]l\{j}g‘l;)+€j—a+mj) >

m;
(5.12) ,
i o (05 sty | GF ) 407 () 2 N = O00)
Finally, define Q¥ := { tq—tlj+tac B“’} From Ej,a 67! < nand #,(BY) > 6/(2d),
it follows that #,(Q%) > d) The proof is finished by e 7! < 6! and (5.12). O

6. ENTROPY OF COMPONENT MEASURES

In this section, we prove three lemmas about the entropy of u* across different scales, which
will be applied in Sections 7 and 8. Lemma 6.1 is an analog of [46, Lemma 4.1], while Lemmas
6.2 and 6.3 replace [46, Lemmas 1.13 and 1.14] with analogous estimates for random measures
at a large proportion of scales.

We begin with some notations. By Theorem 3.2, for P-a.e. w and J C [d], m;ju“ is exact
dimensional with dimension given by dim ;A4 as in (3.4). Inspired by [46], we define

d—1

(6.1) kA=Y X;+ xa(dim A — (d —1)).

j=1
Now, we are ready to state the three lemmas to be proved in this section.

Lemma 6.1. Suppose dimny_1jA =d—1. Forn € (0,1) there exists Q C Q with P(Q) > 1—n
such that for n € N with n=! < n,

—H(u",EY) — Nry| <n forwe .
n

Lemma 6.2. Suppose dimmjy_jj A =d—1. Forn € (0,1) there exists QCQuithP(Q)>1-n
so that the following holds. Let m,n € N be with n=! < m < n. Then for w € §Q there is
Q¥ C [n] with #,(Q“) > 1 —n so that

1
EH(MW q+m|5‘“)>N/<;A n forqe Q”.

Lemma 6.3. Suppose dim A = |J| for some J C [d]. Forn € (0,1) there exists Q C Q with
P(Q) > 1 —1n so that the following holds. Let m,n € N be with ! < m < n. Then for w € Q
there is Q¥ C [n] with #,(Q%¥) > 1 —n so that

—H(u WJ1€;”+m | 5;") >NZXj —n forqe Q.
Jj€J
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6.1. Entropy growth along dyadic partitions. In this subsection, we explore the entropy
growth of the random measures along dyadic partitions.

Lemma 6.4. For n € (0,1) there exists Q C Q with P(Q) > 1 —n so that for n € N with
n~t < n and J C[d],

1 _
—H(WJMW,DXMM) — Ndeimﬂ'JA‘ <n forw el
n d

Proof. By Egorov’s theorem, there is ; C  with P(€;) > 1 — /2 so that for w € O
1 .
‘nH(ﬂ'J/Lw,DnNXd) — Nxgdimm;A| < n/2.

On the other hand, by Lemma 4.1 there exists  C Q; with P(Q) > 1 — 7 so that for w € Q
‘X;‘;‘n - nNXd‘ < nn/2.
The proof is finished by combining the above two equations with Lemma 2.2(iv). O

Lemma 6.5. Suppose dim ;A = |J| for some J C [d]. Forn € (0,1) there exists Q C Q with
P(Q) > 1 -1 so that forn € N with n~! < n,

1 n —
(6.2) ’H(T(J,MT YD wn_ w|n> —|JIN(xa — x1)| <n forwe Q.
n Xd X1

Proof. Let € € (0,1) be with n~! < ¢~'. By Egorov’s theorem, there is Q; C Q with P(;) >
1 — ¢ and ng € N so that for w € 1 and n > ny,

1
;H(WJNwaDn) > ’J’ —¢&.

Then by P being T-invariant, we have

/ inf lH(w[d,W,T"W,Dn) dP(w) = / inf lH(w[d,”,ﬂ,m) dP(w)

n>ng N n>ng 1

2/ inf lH(W[d,l],u”ﬂ)n) dP(w)

o} n>ng 1N

> [J]=0(e).

On the other hand, we have (1/n)H (m;u”"“, D,) < |J| for n € N. From this and above, it
follows that there exists Qo C Q2 with P(Q22) > 1 — 0(51/3) so that for w € Q9 and n > ng,
’ L < O<51/3> .

(6.3 L (g™, D) 1]

By Lemma 4.1 there is Q C Qy with P(Q) > 1 — 0(51/3) so that for w € Q and e~! < n,
(6.4) ’ijm — XT'" —nN(xq — Xl)‘ < ne.
Combining (6.3) and (6.4), we conclude from Lemma 2.2(iv) that for w € Q and e~! < n,

1 mn
—H( ™ p M)—JN . 0(1/3).
‘n T ln @l |JIN(xda — x1)| < Ole

This finishes the proof since n~! <« 71, O
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6.2. Proof of Lemmas 6.1—6.3. In this subsection, we prove the lemmas in the beginning of
this section. First we prove Lemma 6.1.

Proof of Lemma 6.1. Let ¢ € (0,1) be with n~! < e7! < n. Let Q be the intersection of the
Q’s obtained by applying Lemmas 4.1, 6.4 and 6.5 with &, n in place of n,n. Then P(Q) > 1—3¢.
In what follows we take w € Q. Note that by (4.6),

H(u,€9) = H (1, D o ) = H (5, D opn | ) +0(1).

From this, Lemma 6.4, (6.1) and ! < ¢!, it suffices to show
1 d—1
(6.5) ~H (3, D o | £5) = N3 x5) +0(e).
J:
First we show the upper bound. It follows from Lemma 4.1 that for each £ € £,

d d
log # {D €D win: DNE # @} < Z(XZ;'" - x‘j‘”) +0(1) <nN Y (xa—x;) +O(ne).

j=1 j=1

Thus,

d—
(6.6) CH (5D | € < Zxd—x] +0().

Next, we prove the lower bound in (6.5). Since A=“I"D e and 7T (Xd I'p i me)

J

are O(1)-commensurable, it follows from (4.3), Lemma 2.2(111) and (4.7) that
H(,ﬂ,p o |5,°;) - H(u;; g A9l T p |5,°;)
Xd Xd

> H (™", (497D ) = O(1)
(6.7) e 1 [
> H(M ' Td—1] (X DX:IW_Xu_Jn)) - 0(1)
Jj=1 ’
n d—1
= H<7r[d1]MT w7j>:<1 ’Dden_ngln> — O(l) .

For each F € Xd 'D i i by Lemma 4.1 we have
j

d—1 d—1

log#{Fedeﬂ ol FﬂE#@} Z win _ w‘n )+ O(1) <nNZ(Xj—X1)+O(n€).
1 j=1 7=1

Thus,
1 Trw qyd—1 “ =
n Xqg X1 j=1 Xd X =1
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Applying Lemma 2.1(v), we conclude from (6.7), (6.8) and Lemma 6.5 that

L (5D 1 2) 2 (@ - DN~ x) ~ N Y06 1) - 0)

s

-1

=N>» (xa—x;)—O(e).
1

This, together with (6.6), finishes the proof of (6.5). O

<.
Il

Next, we prove Lemma 6.2.

Proof of Lemma 6.2. By applying Lemma 6.1 with /2, m in place of 7, n, there exists ; C Q
with P(21) > 1 — /2 so that for w € Qy,

1 n
EH([LLU,E;;) > NKA — 5

By applying Birkhoff’s ergodic theorem and Egorov’s theorem to lg,, we find Q C Q with
P(Q) > 1 — 7 such that for w € Q there is Q“ C [n] with #,(Q¥) > 1 —n and T9w € € for
q € Q%. From the above inequality, T9% € Q1, n~! < m and (4.9), it follows that

1 1 T4 T4 1
%H(,U, ) q+m |gW) mH(:U’ wagm w) _O<m> >N’€.A_77‘
This finishes the proof. U
Finally, we prove Lemma 6.3.

Proof of Lemma 6.3. Let ¢ € (0,1) be with 7! < 7! < m. Let Q1 be the intersection of
the s obtained from applying Lemma 4.1 and Lemma 6.4 with e, m in place of n,n. Then
P(£21) > 1 — 2e. By applying Birkhoff’s ergodic theorem and Egorov’s theorem to 1q,, we find
Q C Q with P(Q2) > 1 — 7 so that for w € Q there is Q¥ C [n] with #,(Q¥) > 1 —n and
T € Q4 for ¢ € Q¥. In what follows we take w € Q and let ¢ € @“. Then T9w € €.

For E € 1'% with EN 7yR? # (), by Lemma 4.1 we have

log # {D € ngqw|m: DNENmRY + (Z)} <mN Z(Xd —Xj) +O(me).

jedJ
Thus,
1 w w
(6.9) EH(meq D racim | X ) <N (xa—x5) +0(e).
! jeJ
Next we estimate that
H(” 71-Jl‘s‘t;d-i-m | gw)
> H(Awmuqu Stew wrm | S‘”) (by (4.3) and concavity of entropy)
H (™™, w5 En") = 0(1) (by (4.5))
H(mpm™, e8) —0(1) (by Lemma 2.1(iii))
<7TJ/‘L > qu|m> - H(T(-JILI’qu’ ngqwm | 672%0) - O(l) )
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where the last equality is by Lemma 2.1(v). Since T9w € €1 and ! < m, combining the
above with Lemma 6.4 and (6.9) yields that

1 w  —lew w 1
EH(IU’ 77TJ1€q+m’gq) ENZXj_O<m) —0(e).

jedJ

This finishes the proof since n~! < 7! < m. O

7. PROOF OF THE ENTROPY INCREASE RESULT

In this section, we prove the following entropy increase result for random measures, which
serves as an analog to [46, Theorem 1.12]. This result is a crucial ingredient in the proof of
Theorem 1.12.

Theorem 7.1. Suppose dim A < d and dimn;A = |J| for each J C [d]. For e € (0,1) there
exists 6 = 6(¢) > 0 so that the following holds. Let n € (0,1) be with et < n~!. There exists
Q C Q with P(Q) > 1 —n so that forn € N with n~' < n and w € Q the following holds. Let
0 € M (R?) with diam(supp ) < 1/ and 2H(0,E%) >e. Then LH(0x p, %) > Nk + 6.

To prove Theorem 7.1, we need the following version of the Kaimanovich-Vershik lemma. Its
proof follows a similar approach of [46, Corollary 5.2] and is therefore omitted.

Lemma 7.2. Let w € Q, 0,p € M.(R?) and n € N be given. Then for k € N,

H(0 4 p, &) = H(p,€3) <k (H(0 % p, &) — H(p, &) + O(k)..
Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. The proof is adapted from [46, Theorem 1.12], with Proposition 5.1,
Lemmas 6.2 and 6.3 respectively in place of [46, Proposition 1.15, Lemmas 1.13 and 1.14]. To
account for the dependence on additional parameters and for clarity, we provide the necessary
details.

Let dg,e1 € (0,1) and myq,...,mg, k1,...,kq € N be with
(7.1) ettt <smi<k < <m <k <elt < n.

Let Q be the intersection of the Q’s obtained by applying Proposition 5.1 with €,00,1, mj, kj
in place of ¢,d,n, m;j, kj, Lemmas 6.2 with 1 in place of n, Lemma 6.3 repeatedly for J C [d]
with .J, 7 in place of .J, 1, and Lemma 6.1 with &1 in place of . Then P(2) > 1 — O(n). Note
that 7! < m; < kj < nfor 1 < j <d. Forw e Q let QY,Q%,Q% be respectively the Q¥
obtained from Proposition 5.1, Lemmas 6.2 and 6.3. Then #,(QY) > do, #n(Q%) > 1 —n/4
and #,(Q%) > 1 —n/4. Define Q¥ = QYNQYNQY. From Jy' < 5L, it follows that
#,(Q¥) > 5o —n/2 > 0p/2. Let 1 < j < d be the integer obtained along with QY in the
application of Proposition 5.1. In what follows we take w € €2, and let Q¥ C [n] accordingly.
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Note that diam(supp #*%) < k;j/e and ¢! < n7! < mj < kj < n. Using Lemma 4.2, it
follows that

H(G*ki * Y, 57‘;’)
> E1<q<n<n1]H<0*kﬂ 1 Em, | 5w>> O(n)

1 xk; w
> #n(Qw)EqGQ“’ (mH(9 Mk :u ) q+mj | & ))

J

1
@\ P Ereopo- (o

H(e*kj L E | 5;)) —0(n).

By dim A < d, we have A := Z;l:l Xj — kA > 0. By Lemma 2.1(v), concavity of entropy,
(4.7) and 5~ < m;, we conclude from Proposition 5.1 and Lemma 6.3 that for ¢ € Q“,

LH(G*’%*M Em, \5“)2%H(6*’“, ELm | ELN T A EY )
J

m; q+m; [d\{7}~a+m;
1 1
L1 (0 gy e, 1 67) ~ O o)
(7.3) m; ( [d\{s} ‘1"‘ j ) m;
> Ny;+N Y xj—O0(n)
J'#3

=Nka+NA—-O(n).
For g € )%, by concavity of entropy and < m;, it follows from Lemma 6.2 that

1 . 1 1
_ * w) > = w _ —
(T4)  — H(9 Do EL |5)_ij(u VEm, 15) O(mj) > Nka—0(n).

J

Combining (7.2), (7.3), (7.4), #,(Q“) > 60/2 and #,(QY) > 1 — n/4 shows that

1 NA
EH(H*kj */1‘”,55) ZNK;A—I-(SO —0O(n)
1 SoNA
> EH(/L”,S,“L’) + 2 5 O(n) (by Lemma 6.1)
1
> —H (i, &) + 0. (by 65 <n™")

By a rearrangement,
1
- (H(e*kf * w,gg) H(p® 5w)) > 52,
n

By Lemma 7.2 and 6, < k; < n,

1 6
Z(H(6 w cw w 0
—(H (O, &) — H(u” 5))_%
By Lemma 6.1 and (50_1 <k < 61_1, this completes the proof with § = 6(2)/4/<:j. O

8. PROOF OF THEOREM 1.12

In this section, we establish the following theorem, which directly implies Theorem 1.12.

For n € N, let C, be the partition of AN defined by that C,(z) = C,(y) if and only if
Paxln = Pyln for z,y € AN,
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Theorem 8.1. Fiz N € N. Let I' be a partition of AN satisfying (4.1). Set A = V2,0 VT
Suppose x1 < -+ < X4, and ®; is Diophantine for 1 < j < d. Suppose further that for
z,ye ANneNandl <j<d, TjPaln = TjPyn “MPliEs @yl = Pyn- Then

where dim A is from Theorem 3.2, fo is as in (1.5), and hpw (®,A) is as in (1.18).

8.1. Super-exponential concentration. Using Theorem 7.1, we derive the following theo-
rem, which demonstrates that any linear acceleration of scales fails to produce positive entropy
for . This indicates a super-exponential concentration of cylinders.

Theorem 8.2. If dim A < d and dim7 ;A = |J| for each J C [d]. Then for ¢ € (0,1) and
n € N with et < n, there exists Q C Q with P(Q) > 1 — ¢ so that

1 _
(8.2) ﬁH(yﬁ,Sf/[n | &) <e  forwe Q.
Proof. Suppose on the contrary that there exist M > 1, ¢ € (0,1), n € N with e~! < n, and
0y C Q with P(Q;) > € so that for w € Qy,

1
(8.3) EH(V;:’S;‘UJ" | EF) > e
Let n € (0,1) be with
(8.4) el M<nt<n.

Let Q> be the intersection of the Q’s obtained from Lemma 6.1 and Theorem 7.1 with ¢,7 in
place of €,77. Then P(Q2) > 1 — 2n. Define Q3 := Q1 NQeNT"Qs. Since P is T-invariant,
P(T7"y) = P(2) > 1 —2n. By e7! < 7! we have P(Q3) > ¢ — 4n > ¢/2 > 0. In what
follows we take w € (3.

For x € R?, define % := A‘“"”(V,“j)gﬁ(x). Then diam(supp #%) = O(1). Combining (4.5),
(4.11) and (8.3) yields that

1 w "W w 1 w w w 1 w ow w
/nH<9m755\4—1)n) dvy, () :/nH((Vn)g;;’(x)agMn) dvy, (x) = EH(VnﬂgMn | &) > e

Since %H(Q‘;,E&Z‘jl)n) < C(M — 1) for some C > 0, from above there exists E C R? with

vW(E) >¢/(4C(M — 1)) so that for x € E,

%H(H;",S(T]\Z,“_’l)n) >

Hence by T"w € Q9 and Theorem 7.1 there exists 6 = d(e, M) > 0 so that

1 w "W "W
(8.5) Eﬂ(em « T ,5(TM_1)H) > (M — 1)Nka+ (M — 1)6.
By w,T"w € Qg and M < n~! < n, it follows from Lemma 6.1 that
(8.6) ~H (1" E ) > (M= 1)NKA = O(n),
and
1
(8.7) H(p En | E7) < (M = 1)Nk g+ 0(n).
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Note that diam (supp 6% * p?"“) = O(1). From all above we estimate that,

(M —1)Nkag+ O(n)

> L g5, | ) (by (87))
1 n
= —H (v AT 5 | €5 (by (4.3))
> /1H e (@) s AW T g 5“) dvy(z) (by concavity of entropy)
n
1 T w w
> [ SH (05517 ER2 ), ) V(@) = O() (by (4.5))
> / lH(/,Lan 5(M Dn ) dvy (z) (by concavity of entropy and (4.7))
RA\E T
—i—/ EH(HW s plte g1 ) dvy(xz) — O(n)
En x y“(M-1)n n
> (1 =v;(E)) (M =1)Nka —O(n)) (by (8.6))
+ VU (E)(M = 1)Nkg + (M —1)6) — O(n) (by (8.5))
ed
Z(M—l)NHAﬂLE—O( n)- (by v, (E) > ¢/(4C(M —1)))
Then a rearrangement shows that
0]
o < O(n) .
This contradicts § = 6(e, M) and ¢!, M < n~!. The proof is completed. O

8.2. Proof of Theorem 8.1. We begin with a lemma that relates the entropies of v and u*.

Lemma 8.3. Let n € (0,1) and n € N be with n=! < n. Then for w € Q,

CHLE) — H (i, E5)]| <

ni»=n

n

Proof. Define II"V: AN — R? by "N (z) = ¢,,,n(0) for z € AN, Since p* = IIp%, v¥ =
"N @ and ‘ﬂ’j (I(z) — TI"V (- )‘ < O( Aemn ) for 1 < j < d, the proof is finished by (4.8). O

Next, we give some properties of the function defined in (1.5). Let 1 < j; < -+ < js < d and
write J = {jp};_,. Recall the IFS ®; from (2.1). By (1.5),

53) fo (2] £+I§J_27?1X“’ 1f1:€[2b Xy ST lij> for some 0 < ¢ <s—1;
: x) =
" Set— ifzxed; s 00)
2b=1 X b=1 X3 00/ -

The following two lemmas provide the desired properties of fs,. Their proofs follow directly
from the definition and are thus omitted.

Lemma 8.4. For x > 0, write

s
Y(JJ) = {(yla--'7ys>€Rs:0Syb§ij fOTleSS and Zyng}v
b=1
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and let g: Y (x) — [0,00) be defined as
~y
gy) =Y fory=(y,...,ys) € V().
b=1 Xiv

If fo,(z) < s, then maxyecy(y) 9(y) = fo,(x) and the mazimal value is uniquely attained at

m
g:: (Xju"'vijax_Zij70>"'7O)7
b=1

where m = max{0 < k < s: Z'Ile Xj, <@}
Lemma 8.5. Forx > 0 and 0 < m < s,

T— D1 Xy
m 4 ———==b=120 min {s, fo, ()} .
ij+1

Now we are ready to prove Theorem 8.1.

Proof of Theorem 8.1. The proof is adapted from [46, Theorem 1.7] and proceeds by induction
on d. To address the parameter dependence arising from disintegration and to maintain clarity,
we include all necessary details. Assume that the theorem holds whenever the dimension of the
ambient space is strictly less than d. For d = 1, this induction hypothesis is vacuous.

Let () # J C [d]. Since ;g = Tjpy|n implies @g),, = @y, the partitions (Cy)nen are the
same for ®; and ®. Thus hrw (P, A) = hgw(P,.A) by (1.18). Since Ay, = Ay, implies
Amwzm = A, TPyin? the partition A also satisfies the assumption in the theorem for ®;. Note
that dim 7 ;A is the dimension of 7;II3% = II1®/ 3% for P-a.e. w, where II®/ is the coding map
associated with ® ;. Hence by the induction hypothesis,

(8.9) dimﬂ'J.A = min{]J!, fq>J(th((I),A)>} for Q) 7& J g [d]

Since combining Theorem 3.2 and Lemma 8.4 implies that fo(hrw (®,.A4)) is always an upper
bound of dim A, we only need to show that if dim .4 < d, then

dim A > min{d, fo(hrw (P, A))}.

In what follows we assume dim A < d.

First, suppose that dimmy )4 < d — 1. Then dim7y 1jA = fo,_, (hrw (2, A)) by (8.9).
It follows from (8.8) that fo, , (hrw(®,A)) = fo(hrw (P, A)). Hence dim A > dim 7y 1A =
fo(hrw (2,.A)).

Next, suppose dim 7jy_j.A = d—1 and dim ;A < |J| for some () # J C [d]. Then dim7;A =
fo,(hpw (®,.A)) by (8.9). Write J = {jp};_, with j1 < --- < js, and set J, = {j1,..., 5} for
0 < b < s. It follows from Theorem 3.2 that

S 2 o, (hra (9,.4)),

b=1 Xib
where Ay = hg;“i - hgl’)A < xj, for 1 < b < s. Recall hg’A = hrw (P, A) by definition. Then
Lemma 8.4 implies that hpy (®,A) — W54 = S8 Ay = hgw(®,A), and so k5 = 0. This
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shows h[cd]A =0by (3.5) and §; < §g. From dim7jy_j A = d — 1 and Lemma 8.4 it follows that
C,A C,A .
h[ }_h[J] =yx; forl1<j<d-1.

Thus,
d—
C,A C,A
byt = b = hew (@, A4) - Z

Combining the last two equations with Theorem 3.2 gives

dim A = }: o Ty P @A T ey
Xd

where the last inequality is by Lemma 8.5.

Finally, suppose dim7jq_;)A = d — 1 and dim7;A = |J| for each J C [d]. Recall S,(®;),
1 <j <dfrom (1.7). For n € N, define S,,(®) = maxi<j<q Sn(®;), and for w € €, define

S%(®) = min {lrgjax A(Pujspuj): uyv € A B9([u]) > 0, 82([v]) > 0, 1y # wy} ,

with convention min ) = 0. Thus S¥(®) > 0 implies S¥(®) > S,n(®P). Since ®; is Diophantine
for 1 < j < d, there exists ¢ > 0 such that S,(®) > ¢" for infinitely many n € N. By
pigeonholing, there exists 0 < I < N —1 such that S,y (®) > N1 for infinitely many n € N.
Thus,

(8.10) SN (@) > Spni(®) > MV > (2N,

In what follows we let n € (0,1) and n € N be with =1 < n such that (8.10) holds for n. Take

MN 2N
max < C

Let w € Q. If S¥(®) = 0, then H(v¥, €%, ) = H(3,Con) = 0; If S¥(®) > 0, then S¥(®) >
Sun(®) > (V)™ by (8.10). From this, (4.2) and 27"%1]}\! < N it follows that H(v¥,E%,)
H(8“,C,N). Hence,

(8.11) HW?, &%) = H(B®,Coy)  for w e Q.

M large enough so that 2r

Let Q be the intersection of the Q’s obtained from Lemma 6.1 with 1, n in place of n,n, and
Theorem 8.2 with 1,7 in place of ¢,n. Then P(2) > 1 — O(n). For w € Q, we have

Nra > %H(/f", £9) —n (by Lemma 6.1)
> 71@ (1, £9) — O(n) (by Lemma 8.3)
> %H(u,‘;’,&“\gn) — o) (by Theorem 8.2)
= LH(8*.Cow) ~ O(). (by (8.11)

Note that P(Q) > 1 —O(n) and H(8*,C,n) /(nN) < H(p). From above, taking integral for w
in Q with respect to P gives

ka2 [ —GH(B,Cox) dP() — O)
> [ S H(E Con) dP() — O)
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1 R
— —H(8.Cav | &) = O(n) (by (3.14))
> hrw (®,A) = O(n). (by (1.18))
Letting n — 0 shows that k4 > hrw (®,.A). Then by (6.1) and Lemma 8.5,
hrw (B, A) = 3921 X

Xd
This finishes the proof of the final case, and so Theorem 8.1. (]

dimA>d—1+ Zmin{d,fq,(hRW((I),A))}.
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