INTERMEDIATE DIMENSIONS UNDER SELF-AFFINE CODINGS

ZHOU FENG

ABSTRACT. Intermediate dimensions were recently introduced by Falconer, Fraser, and
Kempton [Math. Z., 296, (2020)] to interpolate between the Hausdorff and box-counting
dimensions. In this paper, we show that for every subset E of the symbolic space, the
intermediate dimensions of the projections of F under typical self-affine coding maps are
constant and given by formulas in terms of capacities. Moreover, we extend the results
to the generalized intermediate dimensions introduced by Banaji [Monatsh. Math., 202,
(2023)] in several settings, including the orthogonal projections in Euclidean spaces and
the images of fractional Brownian motions.

1. INTRODUCTION

The study on the dimensions of projections of sets has a long history. For a survey of
this topic, please refer to [12]. In this paper, we focus on the intermediate dimensions of
projections of sets under the coding maps associated with typical affine iterated function
systems.

In what follows, we fix a family of d x d invertible real matrices 17, ..., T, with | 7;]] < 1
for 1 <j<m. Let a= (ai,...,a,) € R™™. By an affine iterated function system (affine
IFS) we mean a finite family 7* = {f?}71, of affine maps taking the form

fHz) =Tix +a; for1<j<m.

Here we write f3 instead of f; to emphasize its dependence on a. It is well known [17]
that there exists a unique non-empty compact set K# such that

K* = ().
j=1

We call K2 the self-affine set generated by F2. Write 3 := {1,..., m}". The (self-affine)
coding map 7@: X — R¢ associated with F2 is

(1.1) 72(1) == lim f2o---0f2(0) fori=iy...ip... €.

n—oo

It is well known [17] that K? = 72(%).
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There is a good deal of work studying various dimensional properties of projected sets
and measures under typical coding maps [7, 14, 18, 19, 20, 21, 25]. Let £ denote the
Lebesgue measure on RY. In his seminal paper [7], Falconer showed that the Hausdorff
and box-counting dimensions of self-affine sets K* = 7(X) remain as a common constant
for £L4m-a.e. a provided that ||T}|| < 1/3 for all j. The upper bound in this norm condition
was later relaxed to 1/2 by Solomyak [25]. Assuming ||7}|| < 1/2 for all j, very recently
Feng, Lo, and Ma [14] showed that for every Borel set £ C 3, each of the Hausdorff,
packing, upper, and lower box-counting dimensions of 72(E) is constant for £L%-a.e. a. In
this paper, letting ' C X, we obtain an analogous constancy result about the intermediate
dimensions of 72(E) for L%™-a.e. a.

Intermediate dimensions were introduced by Falconer, Fraser, and Kempton [13] to
interpolate between the Hausdorff and box-counting dimensions; see [11] for a survey. To
avoid problems of definition, throughout the paper we assume that all the sets, whose
dimensions are considered, are non-empty and bounded. Denote the diameter of a set

U C R by |U|.

Definition 1.1. Let F C R% For 0 < 6 < 1, the upper 0-intermediate dimension of F'
is defined by

dimgF = inf{s > 0: for all € > 0, there exists o € (0, 1] such that for all » € (0, 7),

there exists a cover {U;} of F such that /Y < |U;| < for all i and Z|Ui\s <e}

and the lower 0-intermediate dimension of F is defined by
dim,F' = inf{s > 0: for all ¢ > 0 and r¢ € (0, 1], there exists r € (0,79) and
a cover {U;} of F such that /¢ < |U;| < r for all i and Z]Ui]‘s <e}.

It is immediate that the Hausdorff dimension dimyg F', the upper box-counting dimen-
sion dimpF', and the lower box-counting dimension dimpF' are the extreme cases of the
f-intermediate dimensions. Specifically,

dimg F = dimyF = dimoF, dimgF = dim; F, and dimgF = dim, F.

Despite their extremely recent introduction, the intermediate dimensions have already
seen interesting applications. For example, Burrell, Falconer and Fraser [6, Section 6]
showed that if F is a subset of R? such that limg_, dim,F' = dimy F', then dimyg F' > m
if and only if dimg Py, F' = m for almost all m-dimensional subspace V of R? where Py
denotes the orthogonal projection onto V. More recently Banaji and Kolossvary [2] de-
termined a precise formula for the intermediate dimensions of Bedford-McMullen carpets
and made an unexpected connection to multifractal analysis.

Below we state our first main result on the f-intermediate dimensions of 72(E) for
E C ¥ in terms of the capacity dimensions dimg o F, dimc g/ whose rigorous definitions
are given in Definition 2.4.

Theorem 1.2. Let 0 < 0 <1 and E C X. Then the following hold.
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(i) For all a € R™,
dimym®(E) < dimgyF  and  dimen®(E) < dimggE.
(i) Assume ||Tj|| < 1/2 for 1 < j < m. Then for L™ -a.e. a € RI™,

dim,m®(E) = dimeyE  and  dimgr®(E) = dimcgE.

We remark that the assumption that ||7}|| < 1/2 for 1 < j < m can be weaken to
max;«;(||T;]| + ||75]]) < 1. Indeed the first assumption is only used to guarantee the
self-affine transversality; see Lemma 4.2. As pointed out in [4, Proposition 9.4.1], the
second assumption is sufficient for the self-affine transversality.

Theorem 1.2 is proved through a capacity approach by adapting and extending some
ideas in [6, 10, 14]. Our definitions of kernels are inspired by, but different from that of
Burrell, Falconer, and Fraser [6] where the projection theorems are established for the
f-intermediate dimensions under the orthogonal projections in Euclidean spaces. It is
these new kernels that reveal a unified computational scheme and pave the way for the
extensions to the generalized intermediate dimensions.

In [1], Banaji generalized the f-intermediate dimensions to the so-called ®-intermediate
dimensions dimgF, dimgF (see Definition 5.1) by replacing the size condition r/¢ <
|U;| < r in Definition 1.1 with ®(r) < |U;| < r, where ® is an admissible function. Here
a function @ is called admissible if there exists some Y > 0 such that ® is monotonic on
(0,Y), and satisfies 0 < ®(r) < r for 0 < r <Y and lim,_,o ®(r)/r = 0. In particular, we
get the f-intermediate dimensions when ®(r) = r'/Y (0 < # < 1) and the box-counting
dimensions when ®(r) = —r/logr (see [1, Proposition 3.2]).

It is natural to ask whether there are some results analogous to Theorem 1.2 for the
®-intermediate dimensions. Our answer is affirmative. Moreover, our strategy can be
exploited to study the ®-intermediate dimensions in several settings, including the or-
thogonal projections in Euclidean spaces and the images of fractional Brownian mo-
tions. For the clarity of illustration, we separately state the settings where we study the
d-intermediate dimensions.

Setting 1.3. Let T}, ...,T,, be a fixed family of contracting d x d invertible real matrices.
Write ¥ = {1,...,m}". For a = (ay,...,a,) € R, let 7@: ¥ — R? be the coding map
associated with the affine IFS {Tjx + a;}72, (see (1.1)).

Setting 1.4. Let G(d,m) be the Grassmannian of m-dimensional subspaces of R? and
Yam be the natural invariant probability measure on G(d, m). For V- € G(d,m), let Py
be the orthogonal projection from R? onto V.

Setting 1.5. For 0 < a < 1, the indez-a fractional Brownian motion is the Gaussian
random function B,: R? — R™ that with probability 1 is continuous with B,(0) = 0
and such that the increments B,(z) — B,(y) are multivariate normal with the mean
vector 0 € R™ and the covariance matrix diag(|xz — y|*?, ..., |z — y|**) € R™*™. Denote
the underlying probability space as (2,P). In particular, B, = (Bay,-- ., Bam), where
B,;: R? — R are independent index-a fractional Brownian motions with distributions
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given by

12) P = B € 4) = S [ow ()

for each Borel set A C R.

Now we are ready to present our results E the ®-intermediate dimensions using the
generalized capacity dimensions dimg o F, dimc e F (see Definition 5.6) and generalized
dimension profiles dimg F, dimg E' (see Definition 5.7).

Theorem 1.6. Let ® be an admissible function. Suppose
(1.3) ll_r}(l) rlog®(r) =0 for alle > 0.
Then the following hold.
(i) In Setting 1.5, let E C 3. Then for all a € R,
dimy7?(E) < dimg o and  dimen®(E) < dimc,o E.
Assume ||| < 1/2 for 1 < j <m. Then for LY-a.e. a € RI™,
dimy7?(E) = dime o £ and  dimen®(E) = dimc o E.
(ii) In Setting 1.4, let E C R Then for all V C G(d,m),
(1.4) dimg Py E < dimPE  and dimePyF < dimy E.
Moreover, for ygm-a.e. V € G(d,m),
dimg Py E = dim™FE  and dimgPyE = dimy E.
(iii) In Setting 1.5, let E C RY. Then almost surely,

1 -0 am

1 -
(1.5) dimg B, (F) = —dimg"E  and dimgB.(F) = —dimg,_ F,
a a
where O, is defined in (5.12).

In [1], Banaji asks whether the potential-theoretic methods in [5, 6] can be adapted
to study the ®-intermediate dimensions. This is answered affirmatively by Theorem 1.6
based on the kernels in Definition 5.3 and the condition (1.3). Note that (1.3) holds if
liminf,_,ologr/log ®(r) > 0, which is satisfied by ®(r) = r'/? (0 < § < 1) and ®(r) =
—r/logr. There are more general functions satisfying (1.3), for example, ®(r) = r~1e".

Recently, there have been substantial advancements on giving conditions for the di-
mensions of self-affine sets and measures to attain the affinity and Lyapunov dimensions;
see [3, 16, 24]. We may expect some reasonable conditions on a and 71,...,T,, such
that the intermediate and capacity dimensions coincide in specific settings. It is not hard
to see that the equalities in Theorem 1.2(ii) hold when the underlying IFS consists of
similarities and satisfies the strong separation condition (see Example 6.1).

The paper is organized as follows. In Section 2, we provide the definitions of the
intermediate and capacity dimensions. Then the proofs of (i) and (ii) of Theorem 1.2 are
respectively given in Section 3 and Section 4. After introducing the generalized capacity
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dimensions and the generalized dimension profiles, we prove Theorem 1.6 in Section 5.
Finally, a few remarks are given in the last section.

2. PRELIMINARIES

Throughout this paper, we shall mean by a < b that a < Cb for some positive constant
C, and write a = b if a < b and b < a. If the constant C' depends on some parameters,
we sometimes write the parameters in the subscript to emphasize the dependency. For
example, if a < Cb for some constant C' depending on parameters a and (3, we write
a Sap b. We denote the natural logarithm by log and the natural exponential by exp.
By # we denote the cardinality of a finite set. In a metric space, the closed ball centered

at « with radius r is denoted by B(z,r), and the closure of a set E is denoted by F.

2.1. Intermediate dimensions. As noted in [6], it is convenient to work with some
equivalent definitions of the #-intermediate dimensions. These definitions are expressed
as limits of logarithms of sums over covers. For s > 0,0 < # < 1, and E C R?, define

Sy (E) = inf {Z]Uilsz {U;} is a cover of E with /¢ <|U;| < r} :

Lemma 2.1. Let 0 < 6 < 1. Then for E C RY,

. . . log S (E)
dimyE = | the unique s € [0,d] such that liminf —————= =0
r—0  —logr

- , . log 55 ,(E)
dimpE = ( the unique s € [0,d] such that limsup ————— =0 .
r—0  —logr

and

Lemma 2.1 is a direct consequence of the following result.
Lemma 2.2 ([6, Lemma 2.1]). Let 0 < § < 1 and E C R For 0 < r < 1 and
0<t<s<d,
log S5, (E) log S4, (E)

—(1/0)(s —t) < < —(s—1t).
(1/6)(s = 1) < —logr —logr (s =)
In particular, there is a unique s € [0,d] such that liminf, —logjig(rE) =0 and a unique
s € [0,d] such that limsup, _,, % = 0.

2.2. Capacity dimensions. Let T7,...,T,, be a fixed family of contracting d x d in-
vertible real matrices. Recall ¥ = {1,...,m}N. For n € N, write ¥, := {1,...,m}" and
¥ =, . U{@}, where & denotes the empty word. Write |I| :=n for I € ¥,. For
r = (z)72; € ¥ and n € N, denote x|n :=zy---x,. For I =iy---i, € ¥, define

I={zeX:zn=1} and T;:=T;, ---T

By convention we let 2|0 = @ and T, be the identity map on RY. Let x A y denote

the common initial segment of =,y € ¥. Endow ¥ with the canonical metric d(z,y) :=
exp(—|z Ay|) for z,y € ¥. By convention we set pu(I) := pu([I]) for I € ¥* and any Borel
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measure 4 on Y. For any d x d real matrix T, the singular values of T" are decreasingly
denoted by ay(T), ..., aq(T).

Following [19], for > 0 we define

d . - .
[Tj—y min{1, m} if z #y

for x,y € 3.
1 ifx=y

(2.1) Z(x Ny) = {

For 0 <s<d,0<#60<1,and r > 0, we introduce the kernel

(2.2) Sy (xANy):= max u*Z,(xAy) forz,ye

rl/0<y<r

Let P(E) denote the set of Borel probability measures supported on a compact set FE.
For compact set £ C X, the capacity of E is defined by

2.3 i) = (. [ J5,T(My)du(x)du(y))_l-

HEP(E)

By convention we set C§.(E) := C§.(E) for non-compact subset £ C ¥. Thus we can
assume, without loss of generality, that the set whose capacities are considered is compact.

The existence of equilibrium measures for kernels and the relationship between the
minimal energy and the corresponding potentials is standard in classical potential theory.
We state this in a convenient form for the positive symmetric continuous kernels (cf. [15,
Theorem 2.4] or [10, Lemma 2.1]).

Lemma 2.3. Let E be a non-empty compact set in a metric space, and let K: ExX E —
(0,400) be a continuous function such that K(x,y) = K(y,x). Then there is some
measure i € P(E) such that

1

where Ci (E) = (infepp) [ K(z,y) dp(z)dp (y))f . Moreover,

(2.4) /K(x, y) dpo(y) > C’K(E) forallxz € E,

with equality for ug-a.e. v € E.

A measure pp in Lemma 2.3 is called an equilibrium measure for the kernel K. Now
we are ready to introduce the capacity dimensions.

Definition 2.4 (capacity dimensions). Let 0 < # < 1 and E C X. The lower and upper
capacity dimensions of E are respectively defined by

. log C5,.(E)
dime ,F = | the unique s € [0,d] such that liminf —————— =0,
: r—0 —logr
and
_ , . log Cj ,.(E)
dimcpFE = | the unique s € [0, d] such that limsup —————— =0 .
r—0 —logr

Definition 2.4 is justified by the following lemma, an analog of [6, Lemma 3.2]. For
completeness, we include a detailed proof.



Lemma 2.5. Let 0 <0 <1and ECX. Then for0 <r <1 and0<t<s <d,

log Cj, () log C,(E)
—logr B —logr

(2.5) —(1)0)(s — 1) < < —(s—1).

log Cj T(E)

: =0 and a unique
—logr

In particular, there is a unique s € [0,d] such that liminf,_,,

logCy .(E) 0

s € [0,d] such that limsup,_,, —2

Proof. Since 0 <r <1 and 0 <t < s, it follows from (2.2) that for z,y € ¥,
7,(1/19)(3715)!]6397“(‘r A y) — 7,(1/9)(371‘,) max UisZu(l’ A y)
’ r1/0 <u<r

— /006t hax uf(sft)uftzu@ AY)
r1/0<u<r

< max u 'Z,(x A by u > r'/?
(26) o rl/ﬂgi(gr ( y) yi=

= Jg (x Ny)

= max u* 'u"*Z,(x Ay)
ri/0<u<r

< Ts_th’T(x AY) by u < r.

Without loss of generality assume that E is compact. By Lemma 2.3, there exists an
equilibrium measure o on E for the kernel Jj . (z A y). Then

T(l/@)(s—t)(car(E))—l < p(1/0)6-1) // Jg - (x A y) dpo(x)dpo(y)

< / Jo (@ N y) dpo(a)dpo(y) by (2.6)
= (Co.(E)) 7,

and so

1) HDCNCL (B) < G, (E).

Similarly,

28) Gy, (B) < *'C4 (E).

By (2.7) and (2.8), taking logarithms and making a rearrangement give (2.5).
Taking limits of the quotients in (2.5) shows that the functions
logCy,(E logCy (K
(2.9) s+ lim inf M and s~ limsup M
r—0 —logr r—0 —logr

are strictly decreasing and continuous on [0, d]. Since Jg .(z Ay) = Z.(z Ay) < 1, we
have C.(E) > 1. This implies

logC) (E log CY (E
(2.10) lim inf M >0 and limsup M >0
r—0 —logr r—0 —logr



On the other hand, since r=4Z,(x A y) = HZ=1 min{1/r, 1/og(Typpy)} > 1 for 0 < r <1,
we have

Typ(@ Ay) = Tlglgg@u”%(:c Ay) > L.

Hence C’gﬂ,(E) <1, and so
log Cj . (E log C4 (E
(2.11) lim infm <0 and limsup 08 Yo\ ") e’r( ) <
r=0  —logr r—0  —logr

Based on (2.10) and (2.11), the proof is completed by the continuity and strict mono-
tonicity of the functions in (2.9). O

3. PROOF OF THEOREM 1.2(1)

We begin with a simple geometric observation.

Lemma 3.1 ([14, Lemma 3.2]). Let a € R¥™. Then

Ny (7*([1])) Sda for I € ¥* andr >0,

1
Z,(I)
where N,.(F') denotes the minimal number of sets with diameter r needed to cover any
bounded set F' C R%.

Next we deduce an upper bound on Sj (7*(E)) from a lower bound on the potentials
of a measure with respect to the kernel J; (z Ay).

Proposition 3.2. Let 0 < s <d,0< 0 <1, anda € R¥. Let E C ¥ be a non-empty
compact set. If for 0 < r <1 there exist u € P(E) and v > 0 such that

/Jéir(m Ay)du(y) =~ for allx € E,

then for all sufficiently small r > 0,

log(1
53 (7*(E)) Saas #

For the proof of Proposition 3.2, we adapt some ideas from the proof of [6, Lemma 4.4].
The overall strategy is to find a cover consisting of balls of relatively large measure and
appropriate diameters. To this end, the authors of [6] replace the balls of large measure
but diameters exceeding ¥ with the collections of balls of diameter r?; see the discussion
about &; and .%; in the proof of [6, Lemma 4.4]. However, instead of only dealing with the
oversize balls, here we replace each of the cylinders of large measure with the collections
of sets of appropriate diameters based on the kernel Jj .(z A y); see (3.4) and (3.5).

Proof of Proposition 3.2. Let x € E. Set {(z) = min{n € N: ay(T,,) < r'/?}. Write
a4 = maxX<j<m||Tj|| and ¢ := [(1/0)logr/loga.]. Then ¢(x) < { since

ar(Toje) = [ Togell < NToo [l -+ |1 T | < @ <07
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For n > {(z) and u > r'/% it follows from (2.1) that Z,(z|n) = 1, and so

(3.1) Jg (x|n) = max wuF=r"%"
o’ rl/0<uy<r

This implies

1< [ e ) duty)
L(z)—1
=Y T @n)pfy € S: |z Ayl =n}
n=0

+r0 L Y iy €St e Ayl = n} + p({a}) by (3.1)
n=~4(x)
L(z)—1
= Y Ji@ln) [u(xln) — p(xl(n + 1)+ r=* u(zl(x))
@)
< ) Ji(@n)u(z|n) by (3.1).

o

n=

Hence there exists an integer n(z) € [0, (z)] such that

s 2 gl
(32) i aln(e)utaln(@) 2 g >

By (2.2), there exists some §(z) € [r!/? r] such that Jj (zn(z)) = 0(2)~* Zs(y (z|n(z)).
Then (3.2) implies

(33 (@) Zagoaln(@)p(aln(z)) = 1.

Since {[z|n(z)]}.ek is a cover of E and n(z) < ¢, we can find a disjoint subcover I" by
the net structure of ¥.. By (3.3), for each I € I there exists some 0; € [r'/?, 7] such that
63 (41
Z&;b) : ¥ wld)
Clearly {7?([I])}1er is a cover of 7(FE) since I' covers E. By Lemma 3.1, we can find for
each 72([I]) a cover D; consisting of sets with diameter 6; € [r'/? r] such that
1
Z5,(I)

(3.4)

(3.5) #D; Sda

Then |J, - Dr is a cover of 72(E) with sets of diameters in [r!/?

S (m(E) <D Y 1Bl = Z#Dz-5i

Iel’ BEDy Ier

S X7 by (3.5)

Iel

,7]. Finally,

<3 H—lu(D by (3.4)

Iel v
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= — by I' disjoint.
This finishes the proof since £ 4+ 1 <y log(1/r) when r is small. O
Now we are ready to prove (i) of Theorem 1.2.

Proof of Theorem 1.2(i). Since the #-intermediate dimensions and capacity dimensions
of a set remain the same after taking closure, without loss of generality we can assume
that E is compact.

Let 0 < s < d. For 0 <r <1, by Lemma 2.3 there exists an equilibrium measure
pr € P(E) for the kernel Jj,.(x Ay) such that

1
J5 (x ANy)du,(y) > ———— for all L.
/ 9,r<x y) 12 (y) = Céir(E) orall v €

Applying Proposition 3.2 with p = p,. gives that for all sufficiently small » > 0,

Sp (7% (E)) < log(1/r) - C,.(E).
By taking logarithms and limits,

log S5 (m®(E logCs (E
(3.6) lim inf —2 b (T(E) < liminf —2= 002/ i (E)
r—0 —logr r—0 —logr
and
log S§ (m2(E logC5 (E
(3.7) lim sup & H’T( (E)) glimsup—g 0’7"( )
r—0 —logr r—0 —logr

Hence Lemma 2.1 and Definition 2.4 show that
dim,7*(F) < dimg,F  and dimy7®(E) < dimg oE.
This completes the proof of Theorem 1.2(i). O

4. PROOF OF THEOREM 1.2(11)

We begin with a lemma modified from [6, Lemma 5.4], which allows us to control
Sp(m2(E)) from below using the upper bounds on the potentials with respect to the
kernel w57r(|x —y|). For0<s<d,0<60<1and0<r <1, define

res/f 0 < A< rl/f
(4.1) p(A) =S A i/ < A<y for A>0.
0 ifA>r

Note that 95 .(-) is non-increasing.

Lemma 4.1. Let 0 < s <d,0< 0 <1, and 0 <r <1. Let E C R? be a non-empty
compact set. If there exist € P(E) and a Borel subset F C E, and v > 0 such that

(12) [ i le = sl duty) <7 for altw € F
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then
1(F)

Ss (E) >
br(E) > —

We can view Lemma 4.1 as a potential-theoretic version of the mass distribution prin-
ciple (see [8]).

Proof of Lemma 4.1. Let x € F and r'/% < § < r. It follows from (4.1) that 5 . (Jz—y) >
6% for y € B(x,0). Then (4.2) implies that

vz v —ant = [ il =l any) = HEE
thus
3 oo BB,
| WILLL)

Let {U;} be a cover of F' with r'/¢ < |U;| < r. Without loss of generality we can pick
some z; € F'NU; for each i. Then U; C B(x;, |U;|) for each i. Hence by (4.3),

Z|U|> Z“ (s, |UH])) @

Taking infima over all such covers gives

()
g
This finishes the proof. O

So.r(E) 2 55, (F) >

The following lemma is contained in the proof of [19, Lemma 5.1] which verifies the
so-called self-affine transversality in (4.4).

Lemma 4.2 ([19, Lemma 5.1]). Assume ||T;|| < 1/2 for 1 < j < m. Let p > 0. Then
forxz,y € ¥ and r > 0,

(4.4) L@ € By |r*(x) — 7 (y)| < 1} Spa Ze(x AY),

where B, denotes the closed ball in RY™ centered at 0 with radius p.

Next we exploit Lemma 4.2 to relate the integral of a — ¢ (|7®(x) — 7*(y)|) to the
kernel Jj (v Ay).

Proposition 4.3. Assume ||T]| < 1/2 for 1 < j < m. Letp > 0,0 < s < d and
0<0<1. Then forx,y € ¥ and 0 <r <1,

(4.5) Vg (|17 (@) = 7 (y)]) da Spa log(1/r) 5, (x Ay).
By

Proof. Write £ := £ for short. By Lemma 4.2,

(4.6) L{a € B,: |1%(z) —7*(y)| <1} Spa Ze(x N Y).
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Set A, := |7®(z) — 7(y)|. Then

Vo (Da) da
By

= / %% da + / A% da by (4.1)
{a€B,: Aa<rl/f} {a€B,: r1/0<Aa<r}

_ T_S/Q,C{a c Bpi Aa < 7‘1/0}+/ E{a c Bp: T1/9 < Aa <r, A;S > t}dt
0
r—s/0
—=5/C{ac B,: Ay < 1/} +/ L{a€ By: r'/? < Ay <min{r, t7'/*}} di
0
r—s/0

= / L{a€ B,: Ay <min{r,t""/*}} at
0

r—*S 7,—5/9
:/ L’{aEBP:AaSr}dt—i-/ E{aGBP:AaSt’US}dt
0 s
,r.—s/(?
Sd,p T_SZT‘<I A\ y) + / Zt—l/s (.I N y) dt by (46)
=r*Z.(xNy) + s/ u St Z (x Ay) du by taking u = t~1/*
r1/0

< (1 + 8/ ut du) Jg (. Ny) by (2.2)

1/6
Sae log(1/r) g, (z A y),
where the last inequality is by s [, v du = s(1/6 — 1) log(1/r) Sap log(1/r). O

Now we are ready to prove Theorem 1.2(ii).

Proof of Theorem 1.2(1i). Our arguments are mainly adapted from the proof of [6, The-
orem 5.1]. We focus on the case of the upper #-intermediate dimensions while the proof
for the lower f-intermediate dimensions is similar. By Theorem 1.2(i), it suffices to prove

ﬁ@ﬂ'a(E) Z ﬁcng
for £L9-a.e. a € B, and p > 0.
Let 0 < s < d. Take a sequence (7)$°; tending to 0 such that 0 < r, < 27% and

logCy . (K log Cj . (E
(4.7) lim sup M = limsup M.
koo —lOgT rs0 —logr

By Lemma 2.3, for each k£ € N there is an equilibrium measure p; on E for the kernel
Jj . (x ANy). Write
1 S
Vi = OS—(E) = / Jo (@ N y) dpg () dpe (y).

G,Tk

Let p > 0. Proposition 4.3 implies that

@8[] [ vl = w0 da di@)diat) S o1 /n).
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Let £ > 0. Note that there is some A > 0 such that 7/2log(1/r) < A for all 7 > 0. Then
summing (4.8) over k € N and using Fubini’s theorem lead to

L3 (o [ w0 = D di)iin) ) da
Bp k=1
< Zlog L/rg)ry, < AZTE/2 < AZQ"“/Q < 00.
k=1
Hence for L%™-a.e. a € B, there exists M, > 0 such that

/ Vg ( ) dr® g (v)dm® g (u) < Maygr,©  for all k € N.

Then for each k there exists some Borel F), C 72(FE) such that (72 )(F)) > 1/2 and

/we e ) dr®pu(v) < 2Mayer,©  for all u € Fy.

Lemma 4.1 implies that

S a 1 E ., — € S
S@,rk (7T (E)) 5(2Ma’yk7ﬂk ) ! za T Yk b= TkCQ,Tk(E)7
thus
log S; . (m®(E log (r:C5 .. (E
Jim sup g e,rk< (E)) > lim sup g( k e,rk< ))
k—oco — log k—oc0 — log 7
logCs  (E
k—o0 — log 7y,
logCs (E
= —¢ + limsup M by (4.7).
r—0 —logr
Letting ¢ — 0 gives
log S§ (m2(E logCs (E
lim sup 8 G’T( (E)) > limsupm for 0 < s <d.
r—0 —logr r—0 —logr

Finally Lemma 2.1 and Definition 2.4 show that
dimym®(E) > dimceE  for L™-ae. a € B,

The proof for the lower #-intermediate dimensions is similar. O

5. GENERALIZED INTERMEDIATE DIMENSIONS

In this section, we will prove Theorem 1.6 through a similar strategy of Theorem 1.2.
In what follows, let ®: (0,Y) — (0, 00) be an admissible function for some Y > 0.

13



5.1. Generalized intermediate dimensions. Following [1], we introduce the general-
ized intermediate dimensions called the ®-intermediate dimensions.

Definition 5.1 (®-intermediate dimensions). For E C R, its upper ®-intermediate
dimension is defined by

dimgE = inf{s > 0: for all £ > 0 there exists ry € (0, 1] such that for all r € (0, 7),

there exists a cover {U;} of E such that ®(r) < |U;| < r for all i and Z!Uﬂs <e}

and its lower ®-intermediate dimension is defined by
dimg F = inf{s > 0: for all ¢ > 0 and 7 € (0, 1] there exists r € (0,ry) and

a cover {U;} of E such that ®(r) < |U;| < r for all i and Z|Ui|3 <e}.

We can describe the ®-intermediate dimensions by employing a similar approach to
that used in defining the Hausdorff dimension with the aid of the Hausdorff measures.
For s > 0,7 >0, and £ C R?, define

(5.1) Sp,(E) = inf {Z|Ui|5: {U;} is a cover of E with ®(r) < |U;| < r} :

Lemma 5.2. Let ® be an admissible function and E C R®. Then

dimeE = inf{s > 0: limsup S5 (E) < oo} = inf{s > 0: limsup S} ,(E) = 0}

r—0 r—0

=sup{s > 0: limsup S ,(E) = oo} = sup{s > 0: limsup Sy .(F) > 0}
r—0 =0

and
dimg, E = inf{s > 0: limiglf S (E) < oo} =inf{s >0: limiglf Se.(E) =0}
r— ’ r— ’
= sup{s > 0: limiglf S . (E) =00} =sup{s > 0: limiglf Se.(E) >0}
r— ’ r— ’

Proof. Since E is non-empty, we have Sg .(E) > 1. Pick any z € E, then E C B(x, |E|).

Since E is bounded, we have for r < |E],
d
Sor(E) < 84, (B(z, |E)) < r'Ny(B(x, |E])) Sq v max{1, | b= 1Bl

Y

rd
where the last inequality follows from Lemma 5.4. Note that for 0 <t < s,

(5.2) O(r)*"84 . (E) < Sg,(E) < 1r°7'Sg . (E).
By combining (5.2) with S3 .(E) > 1 and S§ (E) < |E|%, we can complete the proof in a

similar manner like the definition of the Hausdorff dimensions (see [8, Section 3.2]). O

Note that by (5.2) a similar proof of Lemma 2.1 shows that

- _ . log 53, (E)
(5.3) dimgE = ( the unique s € [0,d] such that limsup ————— =0
r—0 —logr
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if lim sup,_,, logr/log ®(r) > 0, and

log S3 . (E
(5.4) dimg F = <the unique s € [0, d] such that lim inf M = O) .
r—0 —logr

if liminf, ,ologr/log ®(r) > 0.
5.2. Generalized capacity dimensions and dimension profiles. We begin with the
introduction of some appropriate kernels in the corresponding settings.
Definition 5.3. (kernels) Let @ be an admissible function.
e In Setting 1.3, let 0 < s < d and 0 < r < 1. Define
(5.5) Jo (r ANy)= max u*Z,(rxAy) forz,yel,

d(r)<u<r

where Z,(x A y) is defined in (2.1).
e In Setting 1.4 and Setting 1.5, let 7 > 0, 0 < s < 7, and 0 < r < 1. Define

$,T _ _ —5 T o d
(5.6) Jo, (|7 —yl) A U ¢u(lz —yl) forz,y € RY,
where
(5.7) ¢7(A) = min {1, (%)T} for A > 0.

Like Lemma 3.1, we have the following simple geometric fact.

Lemma 5.4. Let B(xz,A) C R™ be a ball. Then for r >0,

1

N.(B(x,A)) Sim PTINE

Proof. Write x = (x1,...,xy,) and A = [, [z; — A, z; + A]. Note that A can be covered
by C'max{1, (A/r)™} manly cubes with side length r/y/m, where C' is a constant only
depending on m. This completes the proof since B(x,A) C A and the diameter of each
cube with side length r//m is r. O

We proceed by defining the capacities with respect to the above kernels.

Definition 5.5 (capacities). Let X be a compact metric space and K: X x X — (0, +00)

be a continuous function. For each compact set £ C X, the capacity of E with respect
to the kernel K is defined by

(53) cute) = int, [ wan du(az)dmw)_l.

neP(E

By convention we set Cx(E) = Ck(E) for every non-compact set £ C X. Thus when it
comes to capacities, without loss of generality we can assume that the underlying set is
compact. In particular, we focus on the following capacities.

e In Setting 1.3, let K(z,y) = J3,.(x Ay) (see (5.5)). Define
Cy,.(E):=Cg(E) for ECX.
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e In Setting 1.4 and Setting 1.5, let K(z,y) = Jg (| —y|) (see (5.6)). Define
Cy,(E) :== Cg(E) for each bounded set £ C RY.

Now we are ready to define the generalized capacity dimensions called the ®-capacity
dimensions and the generalized dimension profiles called the ®-dimension profiles.

Definition 5.6 (®-capacity dimensions). In Setting 1.3, let £ C 3. The upper and lower
®-capacity dimensions of E are respectively defined by

dimceE = inf{s > 0: limsup Cj (E) < oo} = inf{s > 0: limsup C§ ,(E) = 0}

r—0 r—0
= sup{s > 0: limsup Cy (F) = oo} = sup{s > 0: limsup Cy .(£) > 0}
r—0 r—0

and
dimg 4 F = inf{s > 0: lil;rgiglf Cs,.(F) < oo} =inf{s > 0: liggiglf Csy.(E) =0}
= sup{s > 0: ligl_}glf C3,.(E) = oo} = sup{s > 0: ligl_jglf Cy.(E) > 0}.
Definition 5.7 (®-dimension profiles). In Setting 1.4 and Setting 1.5, let £ C R? and
7 > 0. The upper and lower ®-dimension profiles of E are respectively defined by
dimg E = inf{s > 0: lim sup Cyr(E) < oo} =inf{s > 0: lim sup Cy,(E) =0}
r—s r—

= sup{s > 0: limsup CF(F) = oo} = sup{s > 0: limsup Cg .(E) > 0}

r—0 r—0

and
dimg F' = inf{s > 0: ligljglf Cyp,(E) < oo} =inf{s > 0: ligljglf Cg,(E) =0}
= sup{s > 0: hgl_jglf Cyr(E) = oo} = sup{s > 0: lirrn_}glf Cg,(E) > 0}.

Definition 5.6 and Definition 5.7 are justified as follows. Let K3 .(z,y) = J3,.(z Ay)

or Jg (| —yl). According to Definition 5.3, for 0 <t < s,
K () < K3 (2,5) < B() " OKS, (2, y).

Then
(5.9) @(r)s_tCK;M(E) < Cg;, (E) < rs_tC’Kgm(E).
Since Jg . (z Ay) <1and J¢,.(z Ay) > 1, we have Cg .(E) > 1 and Cf ,.(E) < 1. Hence
(5.10) 0 < dimg o F < dimceE <d for EC 2.
Let E C R?. Since Jg’;(|x —y|) <1 and for 0 < r < min{l,|E|},

1 1 1
Jer(Jr —y]) = max min{ —, ———— & > > 1,
it = e wn{ e  |>
we have Cg7(E) > 1 and C37(F) < 1 when r is small. Hence
(5.11) 0 <dimgF < dimgFE < 7.
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A combination of (5.9), (5.10), and (5.11) justifies Definition 5.6 and Definition 5.7 in
the same way as the proof of Lemma 5.2.

From (5.9), we can characterize the ®-capacity dimensions and the ®-dimension profiles
like (5.3) and (5.4) if limsup,_,ologr/log ®(r) > 0 and liminf, ,ologr/log ®(r) > 0 are
respectively assumed.

Before finishing this subsection, we introduce a function &, associated with ®. It is
useful in the proof of Theorem 1.6. For 0 < o < 1, define

(5.12) Dy(r) == d(r)Y> for 0 <r <YV

It is readily checked that ®, is admissible.

5.3. Upper bound. We begin with a lemma about the behavior of the capacities under
the Holder continuous maps.

Lemma 5.8. Let 7 > 0 and 0 < s < 7. Let f: RY — R™ be a map. If there is some
0 < a<1 such that

(5.13) [f(@) = fWI S |z =yl foraz,y e R,
then for 0 <r <1,
(5.14) Jor(1f (@) = fW) Zr Jg. el = y]).-

In particular, for E C R and 0 < r < 1,
CIT(F(E)) Sr €207, (ED).

Proof. According to (5.6),
Jo (1 (@) = f(y)l)

—s . uT
B e {1’ f(x) - f<y>|T}

R max w”*min {1, u—} by (5.13)
o(r)<u<r |ZL‘ —_ y|orr
(5.15) I

= max v~ % min {1, —} by letting v = u'/®
P(r)t/a<v<rt/a |z — ylo

= max v~ % min {1, S — } by (5.12)
O, (rl/e)<p<rl/a |.I‘ — y|0¢7’

= Jgj,i:/a(‘x —9|).

This proves (5.14).

Without loss of generality we assume that F is compact. By Lemma 2.3, there is an
equilibrium measure v € P(f(E)) for the kernel Jg'(|u — v|). Then [23, Theorem 1.20]
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gives some p € P(F) such that v = fu. Hence

Coeenn) = ([ 10— D du(aldut) )
(5.16) >, ( [ 5@ - s du(x)du(y))_ by (5.14)

-1
- ([ 5tu— s wtontn) - cie),
This completes the proof. Il

We now demonstrate how the capacities behave under a map with the modulus of
continuity similar to that of the fractional Brownian motion.

Lemma 5.9. Let 7 > 0 and 0 < s < 7. Let f: R — R™ be a map. If there exist some
0<a<1land0< A <1 such that

(5.17) 1f(x) = f)| Sl —y|*log(1/ |z —y|)  for z,y € RT with |z —y| < A,

then for all sufficiently small r > 0 and z,y € R? with |z — y| < A,

(5.18) Jo (If (@) = FW)]) Zra [log(1/@(r))] g T0e (| = w).

Let E C RY be a bounded set. Suppose further that there is some 0 < 3 < 1 such that
(5.19) [f(2) = fI S le—yl” forz,yeE.

Then for all sufficiently small r > 0,

(5.20) Cor(f(E) Srap [log(1/@(r)]"Cya (E).

Proof. Let x,h € R? with |h| < A. According to (5.6),
Jo, ([f(x +h) = f(2)])

uT
= max u °min< 1,
®(r)<usr { [f(z+h) = fl2)] }

uT
2, max u °min< 1, by (5.17
R g { |h|muog<1/\h\>r} y (5:17)

u T
= ~*mi 1, ——— .
B(usr mm{ ’(—|h|alog1h!> }

For ®(r) < u <r, write

u ’ u”
L(u,h) :=min< 1, [ ——— and  M(u,h) :=min< 1, —— 5.
= min {1, () } )= min {1 |

If u> —|h|*log|h|, then L(u,h) = 1 > M(u,h); If u < —|h|*log|h|, then ®(r) <
—|h|*log|h|. Denote g(x) := —z*logx for x > 0. Note that when r is small,

(5.21)

g (20)7) = =2 0(r) 10 B(r) < 0(r) < g(|h)
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2/«

Since ¢(z) is increasing on (0,exp(—1/«)), we have |h| > ®(r)**. Hence

U T

T a\T u
L = —] > (=) [log(1l/® T—— 2 [log(1/® M :
) = (i) = (5) MoRU/RENI7 4 2 Hon(1/ ()] 2w )
This concludes that
L(u,h) Zar [log(1/®(r))] "M (u,h) for ®(r) <u <r, |h| <A.
Together with (5.21), we have

Ton(If @+ h) = f(2)]) Zra [log(1/@(r)] " max “mn{l!%}

P(r)<u<r
= [log(1/@(r))] ™" Jg. T /a(R]);
where the last equality is by taking v = u!'/®. This proves (5.18).

Without loss of generality assume that E is compact. For z,y € E with |z — y| > A,
(5.19) implies that
E B
)~ )l < 12 =

Aa

A Sa,ﬁ A < ‘ZL‘ - y‘a>
thus the calculation in (5.15) shows that for z,y € E with |z —y| > A,
Jor(1f (@) = fW) Zras T, oisallz = yl)-
Together with (5.18), we have for z,y € E and sufficiently small r > 0,
(5.22) Jo (1 () = FW)]) Zras log(1/@(r))] 7T (l = yl).
Based on (5.22), we apply the arguments in (5.16) to get
Cor(f(E) Srap [log(1/@(r)]"Cylu (E).
This finishes the proof. U

To apply Lemma 5.9, below we recall Lévy’s modulus of continuity for the fractional
Brownian motion (see e.g., [22, Chp. 18, Eq. (3)]).
Lemma 5.10. In Setting 1.5, let E C R? be a bounded set. Then almost surely,
|Ba() = Bal)| S |2z = y|*?  forz,y € B,
and there ezists some 0 < A < 1/10 such that

|Ba(2) = Ba(y)| S |z = y[*V1og(1/x —yl)  forz,y € E with |x —y| < A.

Remark 5.11. In [5, 9], the Holder continuity of the fractional Brownian motion is
sufficient for obtaining results about the f-intermediate dimensions. However, for the
d-intermediate dimensions, the more precise modulus of continuity in Lemma 5.10 seems
necessary.

Now we are ready to prove the key ingredients in the proof of the upper-bound part of
Theorem 1.6. They are analogous to Proposition 3.2.

Proposition 5.12. Let ® be an admissible function.
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(i) In Setting 1.3, let E C ¥ be compact and 0 < s < d. Let a € R¥™. If for
0 <r <1 there exist p € P(E) and v > 0 such that

[ S nduty) 20 for iz e £

then for all sufficiently small r > 0,

P L))

v

In particular,

(5.23) Se+(T*(E)) Saalog(1/@(r))C . (E).
(i1) In Setting 1.4, let F C R™ be compact and 0 < s < m. If for 0 < r < 1 there
exist p € P(F) and ~y > 0 such that

(5.24) [ szte = s dn) = foraltz e

then for all sufficiently small r > 0,

(5.25) S3.,(F) < 28U/20)
’ Y

In particular, for E C RY and V € G(d, m),
(5.26) Sor(PvE) S log(1/®(r)) Cgy' (E).

(iii) In Setting 1.5, let E C R? be compact and 0 < s < m. Then almost surely for all
sufficiently small r > 0,

(5.27) So.r(Ba(E)) < [log(1/@(r)]™ " Ca . (E).

Proof. (i) follows from a similar proof of Proposition 3.2.

Next we prove (ii) by adapting some ideas of [6] but considering a different kernel
Jgo (lz —yl). Write D := [log(|F|/®(r))]. Let z € F. Then F C B(x,|F|) C
B(z,exp(D) ®(r)). For simplicity, define

o = exp(k)®(r) for k=0,1,2,...
By convention we set §_; := ®(r).

Since Jg''(|z — y|) = ®(r)~* for y € B(x, ®(r)) and A — Jg7'(A) is non-increasing,
by (5.24),

)< / 5™ (12 — ) du(y)
[ g ) duty +Z y) T3 = ol) duty)
B(z,00) B(z,6k)\B(z,0k—1)
D
< Z " (Ok—1)p(B(x, 0x)).
k=0
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Hence for each « € F, there exists some integer k(z) € [0, D] such that

s,m 7
(5.28) Ja (On)-) (B (2, 0xw)) 2 527
By (5.6), we can find some u(z) € [®(r),r| such that
(5.29) w(@) ™ Gy (Oh(a)—1) = g7 (Oh(a)-1)-
Since

Duu(z) (Ok(a)) = exP(=1) Byl (Ok(z)—1) Zm Pu(ar) (Ok()—1),
it follows from (5.28) and (5.29) that

—s m 8

By a rearrangement,
u(x)s <. D+1

Let & = {B(:c,ék(x))}zep. Then £ is a cover of F. For each B = B(z, ) € %,
write 6p := Op(y) and up 1= u(x) € [®(r),r]. Then (5.30) becomes

(5.30) H(B(z, Suiay))-

U3 D+1
5.31 5__ < B) for B € A.
31 o > M)

By Lemma 5.4, for each B € £ there is a cover ['g consisting of sets with diameter up
such that

1
5.32 I'p <,, ———.
( ) # B 5 ZlB (53)
By Besicovitch covering theorem (see [23, Theorem 2.7]), there are %,...,B. C A
covering F' such that each %; is disjoint, where ¢ only depends on m, that is,

and

BNnB' =0 for BB e%, BB ,i=1,...,c
Then the collection |Ji_; Upcy I'p covers F and consists of sets with diameters in
[®(r),r]. Hence

S, <Y S S

i=1 Be#; Uel'p

=22 #Ts-uj

i=1 Be%AB,;
S Z > a by (5.32)
i=1 BE%;
S Z > — D+l by (5.31)
i=1 Be%;
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D+1

S ——— by each 4; disjoint
~
< log(1/®(r))
Y

when 7 is small. This proves (5.25).

Since Lemma 2.3 gives an equilibrium measure p € P(F) satisfying (5.24) with v =
1/Cg(F), it follows from (5.25) that

(5.33) S, (F) S log(1/®(r))Cg (F).

NS

Since |Pyx — Pyy| < |x —y| for each orthogonal projection Py, applying Lemma 5.8 with
a = 1 shows

(5.34) Cym(PyE) S Gy (E).
Applying (5.33) with F' = Py E, we obtain (5.26) from (5.34).
Finally we move to (iii). By Lemma 5.10 and Lemma 5.9, we have almost surely that
Cay (Ba(E)) Sima [log(1/@(r)]"Cg 7o (E).
Hence applying (5.33) with F' = B,(F) gives that almost surely,
So.+(Ba(E)) < [log(1/®(r))]" 1 C3 . (E).

D, 7,‘1/04

This completes the proof. O

5.4. Lower bound. We begin with an analog of Lemma 4.1. For 0 < s < d and r > 0,
define

O(r) A< P(r)
(5.35) Vg, (A) = A* o(r)<A<r for A>0.
0 A>r
Lemma 5.13. Let ® be an admissible function. Let 0 < s <d, 0 <r <1, and E C R?

be a non-empty compact set. If there exist u € P(E), a Borel subset F' C E, and v > 0
such that

/%r —yl)duly) <y forallz€F,

then
p(F)

S (E) >
o0 (E) S

Lemma 5.13 follows from a similar proof of Lemma 4.1. Below we provide two lemmas
showing that there are some appropriate transversalities in Setting 1.4 and Setting 1.5,
which are the analogs of Lemma 4.2.

Lemma 5.14 ([23, Lemma 3.11]). In Setting 1.4, let x,y € R? and r > 0. Then
(5.36) Yam{V € G(d,m): |[Pyx — Pry| <7} Sam ¢ (lz — yl)
where ¢ (| — y|) is as in (5.7).
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Lemma 5.15. In Setting 1.5, let x,y € R? and r > 0. Then
(5.37) P{|Ba(z) = Ba(y)| < 7} Sm 7|2 — ).
Proof. By (1.2),
P{|Bs(z) — Ba(y)| <1} <P{|Bai(z) — Bai(y)| <rforall 1 <i<m}

(= Lo Carsm) @)
2|z — y|* Jy<r 2|z —yl>*
1 m
()
[z = yl* Jjy<r

Tm

—om___
|z =yl

Tl/a >am
< ( .
|z — 9|

Since P(A) <1 for all events A C €2, we have

P{1B. () ~ Ba)] < 1} S min {1 (—/)m} = e (2 — 9.

|z =yl
This finishes the proof. U

As an analog of Proposition 4.3, the following lemma reveals a unified computational
scheme for the integrals over parameters in various contexts.

Proposition 5.16. Let ® be an admissible function and 0 < r < 1.

(1) In Setting 1.3, assume ||T5]] < 1/2 for1 < j<m. Let 0 < s < d and z,y € .
Then

; b, (Im(x) = m%(y)]) da Sp.a log(1/@(r)) I . (x A y)

where B, denotes the closed ball in RY™ centered at 0 with radius p > 0.
(ii) In Setting 1.4, let 0 < s < m and z,y € R?. Then

/G o o (1B = Pryl) (V) S Los(1/20) 57—l
(iii) In Setting 1.5, let 0 < s < m and x,y € R%. Then

| 8 (1Bae) = Bulu)]) dB@) S ToB(1/2(0) T3 51 e = o).

Proof. We begin with a general computational scheme assuming the abstract transver-
sality (5.38). Then the proof is completed by substituting (5.38) with the corresponding
transversality in different settings.

Let (A, v) be a measure space and A — A be a measurable function from A to (0, +00).
Suppose

(5.38) v{\: Ay <r} <K, forr>0,
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where r — K, is a measurable function. According to (5.35),

/A B (Dn) (V)

= O(r)"*dv(N\) + / AV dr(N)

{A: A\<®(r)} {A: O(r)<Ax<ZT}

O(r)*v{r: Ay < O(r)} + /00 v{A: @(r) < Ay <r, A" >t}dt
=O(r) "v{A: Ay < O(r)} + /‘P(r)‘s v{\: ®(r) < Ay < min{r,t"Y*}} dt

®(r)=*
= / v{\: Ay < min{r, 7}V dt
0

r—s D(r)—s
:/ y{)\:A,\gr}dt—l—/ v{\: Ay <t Vo) at
0 r

P(r)—s
=rv{\: A\ <r} +/ vi\: Ay <t 5} at

r—s

By changing variable with v = ¢~/%,

RN
=rv{\: A\ <r}+ s/ w TN Ay < u}du
®(r)

(5.39) SrUKe+s / u CTVEK, du by (5.38)
[0

~ (r)

= (1—1—3/ u_ldu> max u ‘K,
®(r) D(r)<u<r

< (s + 1) log(1/(r)) ( max u‘sKu> ,

d(r)<u<r

where the last inequality follows from |, '1:(1“) u™tdu <log(1/®(r)).

Finally by replacing (5.38) with Lemma 4.2, Lemma 5.14, and Lemma 5.15 respectively,

we finish the proof by (5.39).

5.5. Proof of Theorem 1.6.

Proof of Theorem 1.6. Based on Proposition 5.12 and Proposition 5.16, the statements

of different settings in Theorem 1.6 result from similar arguments. Hence to avoid repe-

titions while maintaining clarity, we exemplify the arguments by showing (1.4) and (1.5).

Without loss of generality, we assume that E is compact.

For (1.4), we show dimgzPyE < dimj E while the proof of dimePyE < dimg E is

similar. Let s > ¢ > dimg £. Then

(5.40) liminf Cg7(E) = 0.

r—0
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By (1.3), there is some A > 0 such that
r*log(1/®(r)) < A for r > 0.
Hence by (ii) of Proposition 5.12 and (5.9),
S (PvE) < log(1/@(r) T3 (B) < v~ log(1/8())CL™ (E) < ACK™(E).
By (5.40), taking lim inf,_,y on both sides of the above inequality implies
liminf S5, (PyE) = 0.
r—0 ’
This shows dimg Py E < s by Lemma 5.2. Letting s — dimg ' gives
dimg Py E < dimg E.
Next we prove (1.5) by showing that almost surely dimgB,(E) = iﬁg’:E while the
proof for almost surely dimg, B, (E) = 1dimg™ E is similar. Let s > ¢ > éﬁgf:E Then
(5.41) lim sup C’O‘t O‘Z’L(E) = lim sup Cg" o (E)=0.

r—0 r—0

By (1.3), there is some A > 0 such that
(5.42) rE=/mt D 160(1/®(r)) < A for r > 0.
By (iii) of Proposition 5.12; almost surely,

S+ (Ba(E)) < [log(1/@(r))]" " Cg> 1. (E)

(bcx T.l/a
< 7 log(1/@(r)))" 1 Cal . (E) by (5.9)
< Amttogter (B by (5.42).

By taking lim sup,_,, on both sides, it follows from (5.41) that almost surely,
limsup S ,.(Ba(E)) = 0.
r—0

Then dimeB.(E) < s by Lemma 5.2. Letting s — édl_ngLE gives
- 1 . am
dimg B, (E) < adim% E.

Hence it suffices to prove that almost surely
T 1—o¢m

(5.43) dime B, (E) > adim% E.

Suppose émgTE > 0, otherwise (5.43) holds trivially. Let t < s < éﬁgTE Take a
sequence (ry) tending to 0 such that 0 < r, < 27% and

(5.44) lim sup C’gs a?}a(E) = limsup Cg” " (E) > 0.

k—o0 ol r—0

By Lemma 2.3, for each & € N there is an equilibrium measure p; on E for the kernel

J;S’i?}aﬂx —yl|). Write
Ty

= g = [ e = u du@) o).
l/a ol

Dq,my
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By (iii) of Proposition 5.16,

645) [ [ 03 1Ba(o) = Bal)) 4B) diaa)din) o1/ ()
Set € := s —t. By (1.3), there is some A > 0 such that
(5.46) /% log(1/®(r)) < A for r > 0.

Then summing (5.45) over k£ € N and using Fubini’s theorem lead to

/Q (Ti% / V3, (| Bal) = Ba(y)]) duk(x)duk(y)> dP(w)
k=1
<S> log(1/®(ry))ry by (5.45)
k=1

<AY by (5.46)
k=1

< AZ2_k€/Z < 00 by e < 27K
k=1

Hence almost surely there exists M > 0 such that

// Vg ( v|) dBapu(v)dBapu(u) < MAygr, ¢ for all k € N.

Then for each k € N there is some Fy C B, (FE) such that (Byux)(Fx) > 1/2 and

/1/@ - v|) dBopig(v) < 2Myr,© for all u € F.
It follows from Lemma 5.13 that for each k € N,

(5.47) Son (Ba(E)) > 5 (2Myr )™ 2 iy = i 27 (B).

Da,ry,

l\DI»—t

Finally, almost surely we have

limsup S ,.(Bo(E)) > limsup S5, (Ba(E))

r—0 k—o0

> limsupr, *7S5,. (Ba(E)) by (5.2)
k—ro00

2 limsupr, e C’O‘S O‘?}a(E) by (5.47)
k—o0 Pa;,

= lim sup C’as Q?/LQ(E) bye=s—t
k—o00 ol

>0 by (5.44)

This shows that almost surely,
dimg B, (E) > t.
Letting t — édl_ngLE gives (5.43).
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6. FINAL REMARKS

In the section we give a few remarks.

Firstly, we give a specific example such that the equalities in Theorem 1.2(ii) hold.

Example 6.1. Let F = {f;(v) = Tjz +a;}jL, be a IFS consisting of similarities, that is,
T; = X\;0; for some 0 < \; < 1 and orthogonal matrix O;. Let K and 7 be respectively the

self-affine set and the coding map for F. Suppose that F satisfies the strong separation
condition (SSC), that is, fi(K)N f;(K) =0 for i # j. Then for 0 < ¢ <1 and E C X,

(6.1) dimy7(E) =dimpy E and  dimgn(E) = dimgy E.

Next we briefly justify Example 6.1 for dimg, and it is similar for dim,. Take ®(r) = /¢

and write J34() = J32(), C3(-) = C3%(-), and dimy = dimy,. Then
(6.2) Cyd(F) < S;,(F) Seolog(1/r)C(F)  for F C RY,

where the first inequality is by Lemma 4.1 and ¢ .(-) < J;”;i () while the second inequality
is by (5.26) with ®(r) = r/? and V = R%. By Lemma 2.1 and Definition 5.7, it follows
from (6.2) that

(6.3) dimyF = dimy F for F C R
Let x,y € . Since F consists of similarities and satisfies SSC,

(@) = 7(Y)| = [Tyl

Z.(z Ay) = min {1’ (m)d}

/A min S — d = ¢|m(z) — 7
{1,(W>_W(y),)} 8(Ir(2) — m(w))

and so by Definition 5.3,

Then

T3 (7)== ()]) ~ g, (@ A ).

Since 7 is bi-Lipschitz with respect to the metric d(z,y) = ||Tyury|| for z,y € X,
Cyd(n(E)) ~ Cj,(E) for EC 2.

Hence by Definition 5.6 and Definition 5.7,

(6.4) di_mZﬂ(E) =dimgy £ for E C X

Combining (6.3) and (6.4) gives (6.1).

In [1, Definition 2.7], the admissibility of ® is assumed in the definitions of the
®-intermediate dimensions in some general metric spaces. However, in Theorem 1.6 con-

cerning the ®-intermediate dimensions in R?, we may only require that ® is monotone
and satisfies 0 < ®(r) < r instead of the admissibility.
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There is no obstruction in adapting the arguments in [14, Section 9] to estimate the
Hausdorff dimensions of the exceptional sets for the ®-intermediate dimensions. For
example, below we give one such result.

Proposition 6.2. In Setting 1.3, assume ||T;|| < 1/2 for 1 < j < m. Let ® be an
admissible function satisfying (1.3). Then for E C ¥ and 0 < § < d,

dimp{a € R: dimem®(E) < dimg o £ — 6} < dm — 0,

and
dlmH{a c Rdmi mq;.ﬂa(E) < EC@E — (5} <dm — 6.

Inspired by [6, Corollary 6.4] and [1, Theorem 6.1], we can deduce an interesting
corollary from Theorem 1.6 by proving the analogs of the corollaries in [6, Section 6].

Corollary 6.3. Let E C R? be a bounded set. Suppose there is a family of admissible
functions {V,} such that dimg E = s and V, satisfies (1.3) for s € [dimy E, dimgFE].
Then dimp Py E = m for ygm-a.e. V € G(d,m) if and only if dimyg E > m.

A similar result holds for the upper dimensions replacing dimgyE and dimpE with
dimg F and dimgFE, respectively.
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