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Abstract. Let T1, . . . , Tm be a family of d × d invertible real matrices with
‖Ti‖ < 1/2 for 1 ≤ i ≤ m. We provide some sufficient conditions on these
matrices such that the self-affine set generated by the iterated function system
{Tix+ ai}mi=1 on Rd has non-empty interior for almost all (a1, . . . , am) ∈ Rmd.

1. Introduction

In this paper, we provide some sufficient conditions for a typical self-affine set to
have non-empty interior.

Let us first introduce some necessary notation and definitions. By an affine iter-
ated function system on Rd we mean a finite family F = {fi}mi=1 of affine mappings
from Rd to Rd, taking the form

fi(x) = Tix+ ai, i = 1, . . . ,m,

where Ti are contracting d× d invertible real matrices and ai ∈ Rd. It is well known
[10] that there exists a unique non-empty compact set K ⊂ Rd such that

K =
m⋃
i=1

fi(K).

We call K the attractor of F , or the self-affine set generated by F .

In what follows, let T1, . . . , Tm be a fixed family of contracting d × d invertible
real matrices. Let Σ = {1, . . . ,m}N denote the symbolic space over the alphabet
{1, . . . ,m}. Endow Σ with the product topology and let P(Σ) denote the space of
Borel probability measures on Σ.

For a = (a1, . . . , am) ∈ Rmd, let πa : Σ → Rd be the coding map associated
with the IFS {fa

i (x) = Tix+ ai}mi=1, here we write fa
i instead of fi to emphasize its

dependence of a. That is,

(1.1) πa(i) = lim
n→∞

fa
i1
◦ · · · ◦ fa

in(0)

for i = (in)∞n=1 ∈ Σ. Set Ka = πa(Σ). It is well known [10] that Ka is the attractor
of {fa

i }mi=1.
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In his seminal work [5], Falconer introduced a quantity associated to the matri-
ces T1, . . . , Tm, nowadays usually called the affinity dimension dimAFF(T1, . . . , Tm)
(see Definition 2.3), which is always an upper bound for the upper box-counting
dimension of Ka, and such that when ‖Ti‖ < 1/2 for all 1 ≤ i ≤ m, then for
Lmd-a.e. a ∈ Rmd,

dimH K
a = dimB K

a = min{d, dimAFF(T1, . . . , Tm)}.
where dimH and dimB stand for the Hausdorff and box-counting dimensions respec-
tively (see e.g. [6] for the definitions). In fact, Falconer proved this with 1/3 as the
upper bound on the norms; it was subsequently shown by Solomyak [17] that 1/2
suffices. Later, Jordan, Pollicott and Simon [11] further showed that if ‖Ti‖ < 1/2
for all i and dimAFF(T1, . . . , Tm) > d, then Ka has positive Lebesgue measure for
Lmd-a.e. a ∈ Rmd. We remark that the condition dimAFF(T1, . . . , Tm) > d is equiva-
lent to

∑m
i=1 | det(Ti)| > 1, where det(Ti) denotes the determinant of Ti. Moreover,

if
∑m

i=1 | detTi| < 1, then Ka has zero Lebesgue measure and empty interior for each
a ∈ Rmd.

A question arises naturally that under which conditions on T1, . . . , Tm, Ka has
non-empty interior for Lmd-a.e. a ∈ Rmd. Although this seems a rather fundamental
question, it has hardly been studied.

In this paper, we study the above question. For a d × d real matrix A, let
α1(A) ≥ · · · ≥ αd(A) denote the singular values of A, that is, α1(A), . . . , αd(A) are
square roots of the eigenvalues of A∗A. Here A∗ stands for the transpose of A. Write
Σn = {1, . . . ,m}n for n ∈ N and set TI = Ti1 · · ·Tin for I = i1 . . . in ∈ Σn. Define

(1.2) t(T1, . . . , Tm) = inf

{
t ≥ 0: sup

n≥1

∑
I∈Σn

αd(TI)
t| det(TI)| ≤ 1

}
.

The first result of the paper is the following.

Theorem 1.1. Assume that ‖Ti‖ < 1/2 for 1 ≤ i ≤ m. Suppose t(T1, . . . , Tm) > d.
Then Ka has non-empty interior for Lmd-a.e. a ∈ Rmd.

It is easy to see that t(T1, . . . , Tm) > d if and only if
∑

I∈Σn
αd(TI)

d| det(TI)| > 1
for some n ∈ N. As a direct corollary of Theorem 1.1, we have the following.

Corollary 1.2. Assume that ‖Ti‖ < 1/2 for 1 ≤ i ≤ m. Then Ka has non-empty
interior for Lmd-a.e. a ∈ Rmd provided that one of the following two conditions
fulfills:

(i)
∑m

i=1 αd(Ti)
d|det(Ti)| > 1.

(ii) All Ti are scalar multiples of orthogonal matrices, and
∑m

i=1 | det(Ti)|2 > 1.

Next we provide an improvement of Theorem 1.1 in the special case when the
matrices T1, . . . , Tm commute.

Theorem 1.3. Assume that ‖Ti‖ < 1/2 for 1 ≤ i ≤ m. Moreover, suppose that
TiTj = TjTi for all 1 ≤ i, j ≤ m, and

∑m
i=1|det(Ti)|2 > 1. Then Ka has non-empty

interior for Lmd-a.e. a ∈ Rmd.
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We remark that Corollary 1.2 and Theorem 1.3 contain the self-similar and diag-
onal cases, respectively.

The above results (Theorems 1.1 & 1.3, and Corollary 1.2) provide some sufficient
conditions on (T1, . . . , Tm) such that Ka has non-empty interior for almost all a.
We don’t know whether these conditions are sharp. A natural conjecture is that the
conditions of ‖Ti‖ < 1/2 for 1 ≤ i ≤ m and

∑m
i=1 | det(Ti)| > 1 would suffice for Ka

to have the non-empty interior for almost all a.

Now we address some related works in the literature. In [15] Shmerkin investigated
a special class of overlapping affine IFSs Φα,β = {φi(x, y) = (αx + di, βy + di)}2

i=1

on the plane with d1 = 0 and d2 = 1. He proved, among other things, that there
is an open region V ⊂ {(α, β) : 0 < α < β < 1, 2αβ > 1} such that for almost
all (α, β) ∈ V , the attractor Kα,β of Φα,β has non-empty interior. Later Dajani,
Jiang and Kempton [4] showed that there exists a number C ≈ 1.05−1 such that
Kα,β has non-empty interior for each pair (α, β) satisfying C < α < β < 1. The
result of Dajani et al. was subsequently improved and extended in [7, 8, 1]. We
remark that the interior problem has also been extensively studied for integral self-
affine sets (see e.g. [2, 12, 9] and the references therein). Recall that an integral
self-affine set is the attractor of an affine IFS {Ax + ai}mi=1 on Rd in which A−1 is
an integral expanding d × d matrix and ai ∈ Zd for all 1 ≤ i ≤ m. In [9], He, Lau
and Rao produced, among other things, a finite algorithm to determine whether a
given integral self-affine set has non-empty interior. It is worth pointing out that
there exist diagonal self-affine sets of positive Lebesgue measure which have empty
interior; see [3] for such examples in the self-similar setting. However, it remains
open whether there exists an irreducible or strongly irreducible self-affine set with
positive Lebesgue measure but empty interior.

For the convenience of the readers, we illustrate the rough ideas in the proofs of
Theorems 1.1 and 1.3. Under the assumptions of Theorem 1.1, we first show that
there exist a Borel probability measure µ on Σ, C > 0, t > d and r ∈ (0, 1) such
that

µ([I]) ≤ Cαd(TI)
t| det(TI)|rn

for all n ∈ N and I ∈ Σn, where [I] := {x = (xi)
∞
i=1 ∈ Σ: x1 · · ·xn = I}; see Lemma

4.3. Write µa := µ ◦ (πa)−1 for a ∈ Rmd. Clearly µa is supported on Ka. Let µ̂a

denote the Fourier transform of µa; see Section 2.1. We manage to prove that

(1.3)

∫
B(0,ρ)

∫
Rd

|µ̂a(ξ)|2‖ξ‖t dξda <∞

for each ρ > 0, where B(0, ρ) stands for the closed ball in Rmd of radius ρ centred
at the origin. The proof of (1.3) is based on some key inequalities (see Propositions
3.3 and 3.4). By (1.3), for almost all a,

∫
Rd |µ̂a(ξ)|2‖ξ‖t dξ <∞; which implies that

the Sobolev dimension of µa is larger than 2d, hence Ka has non-empty interior (see
Definition 2.1 and Lemma 2.2). This concludes Theorem 1.1. To prove Theorem 1.3,
our main idea is to construct two self-affine sets Ea, F a ⊂ Rd for each a ∈ Rmd such
that Ka contains a translation of the sum set Ea +F a; and moreover for almost all
a, Ea and F a have positive Lebesgue measure. By the Steinhaus theorem, Ka has
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non-empty interior for almost all a. In this approach, the commutative assumption
on T1, . . . , Tm plays a significant role.

It is worth pointing out that by adapting the proof of Theorem 1.1 we can give an
alternative proof of a known result (see Proposition 5.1) on the Hausdorff dimension
and the absolute continuity of projections of measures under the coding map πa.
This will be illustrated in Section 6.

The paper is organized as follows. In Section 2 we give some preliminaries. In
Section 3 we prove two key inequalities that are needed in the proof of Theorem 1.1.
The proofs of Theorems 1.1 and 1.3 are given in Sections 4 and 5 respectively. In
Section 6 we give an alternative proof of Proposition 5.1.

2. Preliminaries

2.1. Fourier transform, Sobolev energy and Sobolev dimension. Recall that

the Fourier transform f̂ of a Lebesgue integrable function f ∈ L1(Rd) is defined by

f̂(ξ) =

∫
Rd

e−i〈ξ,x〉f(x) dx, ξ ∈ Rd,

where 〈·, ·〉 stands for the usual inner product in Rd. Similarly, for a finite measure
µ on Rd with compact support, the Fourier transform of µ is defined by

µ̂(ξ) =

∫
e−i〈ξ,x〉 dµ(x) ξ ∈ Rd.

Let S(Rd) denote the Schwartz class of rapidly decreasing functions on Rd. It
consists of infinitely differentiable functions on Rd all of whose derivatives remain
bounded when multiplied by any polynomial. A basic fact in Fourier analysis is that

f ∈ S(Rd) if and only if f̂ ∈ S(Rd). Let C∞0 (Rd) denote the collection of infinitely
differentiable functions on Rd with compact support. Clearly C∞0 (Rd) ⊂ S(Rd).

Let M(Rd) denote the collection of finite Borel measures on Rd with compact
support. Following Mattila [13] and Peres and Schlag [14], we introduce the follow-
ing.

Definition 2.1. The Sobolev energy of degree s ∈ R of a measure µ ∈M(Rd) is

Is(µ) =

∫
Rd

|µ̂(x)|2‖x‖s−d dx,

and the Sobolev dimension of µ ∈M(Rd) is

dimS µ = sup {s ∈ R : Is(µ) <∞} ,
where we take the convention that sup ∅ = 0.

The following result is needed in the proof of Theorem 1.1.

Lemma 2.2 ([13, Theorem 5.4]). Let µ ∈ M(Rd) with µ 6= 0. Suppose that
dimS µ > 2d. Then µ is absolutely continuous with a continuous density, so its
support has non-empty interior.
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2.2. Singular value function and affinity dimension. Let Matd(R) denote the
set of d×d real matrices. For A ∈ Matd(R), the singular values α1(A) ≥ · · · ≥ αd(A)
are the square roots of the eigenvalues of A∗A. Alternatively, they are the lengths
of the semi-axes of the ellipsoid A(B(0, 1)), where B(0, 1) is the unit ball in Rd.

For s ≥ 0, we define the singular value function φs : Matd(R)→ [0,∞) by

(2.1) φs(A) =

{
α1(A) · · ·αbsc(A)αbsc+1(A)s−bsc if 0 ≤ s < d,

| det(A)|s/d if s ≥ d,

where bsc is the integral part of s. Here we make the convention 00 = 1.

Definition 2.3. Let (T1, . . . , Tm) be a tuple of d × d real matrices. The affinity
dimension of (T1, . . . , Tm) is defined by

dimAFF(T1, . . . , Tm) = inf

s ≥ 0:
∞∑
n=1

∑
I∈{1,...,m}n

φs(TI) <∞

 .

3. Useful inequalities

In this section we establish several inequalities (Propositions 3.3, 3.4 and 3.5), of
which the first two are needed in the proof of Theorem 1.1, and the third one is
needed in the proof of Proposition 5.1(i).

For a = (a1, . . . , am) ∈ Rmd, let πa be the coding map associated with the IFS
{Tix + ai}mi=1; see (1.1). For a differentiable function φ : Rd → R and x ∈ Rd, let
∇xφ denote the gradient of φ at x. We begin with a simple lemma.

Lemma 3.1. Let φ : Rd → R be a linear function and ψ ∈ C∞0 (Rd). For λ > 0, let

I(λ) =

∫
Rd

e−iλφ(x)ψ(x) dx.

Then for each N ∈ N, there exists C = C(ψ,N) > 0 such that

|I(λ)| ≤ C

min{1, ‖∇φ‖}N
(1 + λ)−N for all λ > 0.

Proof. Let N ∈ N. Since ψ ∈ C∞0 (Rd), there exists C = C(ψ,N) > 0 such that

|ψ̂(ξ)| ≤ C(1 + ‖ξ‖)−N

for ξ ∈ Rd. Since φ : Rd → R is linear, there exists u ∈ Rd such that φ(x) = 〈u, x〉
for x ∈ Rd. Hence I(λ) = ψ̂(λu) for λ > 0. It follows that for each λ > 0,

|I(λ)| ≤ C(1 + ‖λu‖)−N ≤ C (1 + λmin{1, ‖u‖})−N ≤ C

min{1, ‖u‖}N
(1 + λ)−N .

Clearly ∇xφ = u for x ∈ Rd. This proves the lemma. �
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Lemma 3.2. Assume that δ := max1≤i≤m ‖Ti‖ < 1/2. Then

(3.1) ‖∇a〈v, πa(x)− πa(y)〉‖ ≥ 1− 2δ

1− δ
for all a ∈ Rmd, x = (xk)

∞
k=1, y = (yk)

∞
k=1 ∈ Σ with x1 6= y1 and v ∈ Rd with

‖v‖ = 1.

Proof. The core of our proof follows closely the proof of [17, Proposition 3.1]. Let
x = (xk)

∞
k=1, y = (yk)

∞
k=1 ∈ Σ with x1 6= y1, v ∈ Rd with ‖v‖ = 1 and a =

(a1, . . . , am) ∈ Rmd. Without loss of generality we may assume that x1 = 1 and
y1 = 2. Write Id := diag(1, . . . , 1︸ ︷︷ ︸

d

). Then

πa(x)− πa(y) = a1 − a2 +
∞∑
k=1

Tx|kaxk+1
−
∞∑
k=1

Ty|kayk+1
=

m∑
j=1

Ujaj,(3.2)

where U1, . . . , Um are d× d matrices defined by

U1 = Id +
∑

k≥1: xk+1=1

Tx|k −
∑

p≥1: yp+1=1

Ty|p,

U2 = −Id +
∑

k≥1: xk+1=2

Tx|k −
∑

p≥1: yp+1=2

Ty|p,

Uj =
∑

k≥1: xk+1=j

Tx|k −
∑

p≥1: yp+1=j

Ty|p for 3 ≤ j ≤ m.

(3.3)

Set A = U1 − Id and B = U2 + Id. By (3.3),

‖A‖ + ‖B‖ +
m∑
j=3

‖Uj‖ ≤
∞∑
k=1

‖Tx|k‖ +
∞∑
p=1

‖Ty|p‖ ≤ 2
∞∑
k=1

δk =
2δ

1− δ
< 2.

Hence either ‖A‖ ≤ δ/(1 − δ) or ‖B‖ ≤ δ/(1 − δ). Suppose that ‖A‖ ≤ δ/(1 − δ)
whilst the other case follows from the same argument. Then

(3.4) ‖U−1
1 ‖ = ‖(Id − A)−1‖ ≤

∞∑
k=0

‖A‖k ≤
∞∑
k=0

(
δ

1− δ

)k
=

1− δ
1− 2δ

.

By (3.2),

∇a〈v, πa(x)− πa(y)〉 = ∇a

〈
v,

m∑
j=1

Ujaj

〉
= (vtU1, . . . , v

tUm),

where vt denotes the transpose of v. Since ‖v‖ = 1, it follows that

‖∇a〈v, πa(x)− πa(y)〉‖ ≥ ‖vtU1‖ ≥ αd(U1) = ‖U−1
1 ‖−1 ≥ 1− 2δ

1− δ
,

as desired. �

Now we are ready to deduce an important integral estimate. For x, y ∈ Σ, let
x ∧ y denote the common initial segment of x and y.
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Proposition 3.3. Assume that δ := max1≤i≤m ‖Ti‖ < 1/2. Let ψ ∈ C∞0 (Rmd) and
N ∈ N. Then there exists C = C(ψ,N, δ) > 0 such that

(3.5)

∣∣∣∣∫
Rmd

ψ(a)e−i〈ξ,π
a(x)−πa(y)〉 da

∣∣∣∣ ≤ C
(
1 + ‖T ∗x∧yξ‖

)−N
for all ξ ∈ Rd and x, y ∈ Σ with x 6= y, where T ∗x∧y stands for the transpose of Tx∧y.

Proof. Let ξ ∈ Rd\{0} and x, y ∈ Σ with x 6= y. Let n = |x ∧ y| be the word length
of x ∧ y. Write

vξ,x,y =
T ∗x∧yξ

‖T ∗x∧yξ‖
.

Then

〈ξ, πa(x)− πa(y)〉 = 〈ξ, Tx∧y(πa(σnx)− πa(σny))〉
= 〈T ∗x∧yξ, πa(σnx)− πa(σny)〉
= ‖T ∗x∧yξ‖〈vξ,x,y, πa(σnx)− πa(σny)〉.

Defining φ : Rmd → R by φ(a) = 〈vξ,x,y, πa(σnx)− πa(σny)〉, we get

(3.6)

∫
Rmd

ψ(a)e−i〈ξ,π
a(x)−πa(y)〉 da =

∫
Rmd

ψ(a)e−i‖T
∗
x∧yξ‖φ(a) da.

Notice that φ is linear (cf. (3.2)). So by Lemma 3.2, ‖∇aφ‖ ≥ (1 − 2δ)/(1 − δ).
Applying Lemma 3.1 (in which we take λ = ‖T ∗x∧yξ‖) yields that for each N ∈ N,
there exists C = C(N,ψ, δ) > 0 so that∣∣∣∣∫

Rmd

ψ(a)e−i‖T
∗
x∧yξ‖φ(a) da

∣∣∣∣ ≤ C(1 + ‖T ∗x∧yξ‖)−N .

Combining it with (3.6) completes the proof. �

In the remaining part of this section, we shall mean by a . b that a ≤ Cb for
some positive constant C, and write a ≈ b if a . b and b . a. If the constant C
depends on some parameters, we sometimes write the parameters in the subscription
to emphasize the dependency. For example, if a ≤ Cb for some constant C depending
on parameters α and β, we write a .α,β b.

For d ∈ N, let GL(d,R) denote the collection of d× d invertible real matrices.

Proposition 3.4. Let d ∈ N, t ≥ 0 and N > t+ d. Then∫
Rd

(1 + ‖Tx‖)−N‖x‖t dx ≈N,d,t
1

αd(T )t|det(T )|
for T ∈ GL(d,R).

Proof. Substituting y = Tx gives

(3.7)

∫
Rd

(1 + ‖Tx‖)−N‖x‖t dx =
1

|det(T )|

∫
Rd

(1 + ‖y‖)−N‖T−1y‖t dy.
7



Let βi = 1/αi(T ) for i = 1, . . . , d. Then β2
1 , . . . , β

2
d are the eigenvalues of (T−1)∗(T−1).

Choosing coordinate axes in the directions of the eigenvectors of (T−1)∗(T−1) cor-
responding to β2

1 , . . . , β
2
d , we obtain∫

Rd

(1 + ‖y‖)−N‖T−1y‖t dy

=

∫
· · ·
∫
Rd

(1 + ‖y‖)−N
(
β2

1y
2
1 + · · ·+ β2

dy
2
d

)t/2
dy1 · · · dyd

≈d,t
∫
· · ·
∫
Rd

(1 + ‖y‖)−N
(
βt1|y1|t + · · ·+ βtd|yd|t

)
dy1 · · · dyd

=
d∑
i=1

βtici,

(3.8)

where ci :=
∫
Rd(1 + ‖y‖)−N |yi|t dy1 · · · dyd. Since ci ≈N,d,t 1 by N > d+ t, it follows

from (3.7), (3.8) that∫
Rd

(1 + ‖Tx‖)−N‖x‖t dx ≈d,t
1

|det(T )|

d∑
i=1

βtici

≈N,d,t
1

|det(T )|
max

i∈{1,...,d}
βti

=
1

αd(T )t|det(T )|
,

which completes the proof of the proposition. �

As a complement of Proposition 3.4, we have the following.

Proposition 3.5. Let d ∈ N, t ∈ (0, d)\Z and N > t. Then∫
Rd

(1 + ‖Tx‖)−N‖x‖t−d dx ≈N,d,t
1

φt(T )

for T ∈ GL(d,R).

The proof of the above proposition is based on the following simple lemma.

Lemma 3.6. Let d ∈ N and s > 1. Then for (x1, . . . , xd) ∈ Rd\{0},∫
R

1(∑d
i=1|xi|s

)
+ |y|s

dy ≈d,s
1∑d

i=1|xi|s−1
.

Proof. Set A =
∑d

i=1|xi|s. Then∫
R

1(∑d
i=1|xi|s

)
+ |y|s

dy = 2

∫ ∞
0

1

A+ ys
dy ≈

∫ A1/s

0

1

A
dy +

∫ ∞
A1/s

1

ys
dy
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≈ 1

A(s−1)/s
=

1(∑d
i=1|xi|s

)(s−1)/s
≈d,s

1∑d
i=1|xi|s−1

,

as desired. �

Proof of Proposition 3.5. Suppose k < t < k + 1 for some k ∈ {0, . . . , d − 1}. Let
α1 ≥ · · · ≥ αd be the singular values of T . Choosing coordinate axes in the directions
of the eigenvectors of T ∗T corresponding to α2

1, . . . , α
2
d, we obtain

∫
Rd

(1 + ‖Tx‖)−N‖x‖t−d dx =

∫
· · ·
∫
Rd

dx1 · · · dxd(
1 +

√∑d
i=1|αixi|2

)N (∑d
j=1|xj|2

)(d−t)/2

≈N,d,t
∫
· · ·
∫
Rd

dx1 · · · dxd(
1 +

∑d
i=1|αixi|N

)(∑d
j=1|xj|d−t

) .

(3.9)

Since d− t > d− (k + 1), applying Lemma 3.6 repeatedly yields

(3.10)

∫
· · ·
∫
Rd−(k+1)

1∑d
i=1|xi|d−t

dxk+2 · · · dxd ≈d,t
1∑k+1

i=1 |xi|k+1−t
.

We make a convention that α1 · · ·αk = 1 if k = 0. Then

(3.11)

∫
Rd

(1 + ‖Tx‖)−N‖x‖t−d dx

.N,d,t

∫
· · ·
∫
Rd

dx1 · · · dxd(
1 +

∑k+1
i=1 |αixi|N

)(∑d
j=1|xj|d−t

) (by (3.9))

≈N,d,t
∫
· · ·
∫
Rk+1

dx1 · · · dxk+1(
1 +

∑k+1
i=1 |αixi|N

)(∑k+1
j=1 |xj|k+1−t

) (by (3.10))

≤
∫
· · ·
∫
Rk+1

dx1 · · · dxk+1(
1 +

∑k+1
i=1 |αixi|N

)
|xk+1|k+1−t

=
1

α1 · · ·αkαt−kk+1

∫
· · ·
∫
Rk+1

dy1 · · · dyk+1(
1 +

∑k+1
i=1 |yi|N

)
|yk+1|k+1−t

=
1

φt(T )

∫
· · ·
∫
Rk+1

dy1 · · · dyk+1(
1 +

∑k+1
i=1 |yi|N

)
|yk+1|k+1−t

where in the second last equality we took a change of variables via yi = αix for
1 ≤ i ≤ k + 1. Since N > t > k, applying Lemma 3.6 repeatedly to the variables

9



y1, . . . , yk yields
(3.12)∫
· · ·
∫
Rk+1

dy1 · · · dyk+1(
1 +

∑k+1
i=1 |yi|N

)
|yk+1|k+1−t

.N,d,t

∫
R

1

(1 + |yk+1|N−k) |yk+1|k+1−t dyk+1

.N,d,t 1

where in the last inequality we used N − k + (k + 1) − t = N − t + 1 > 1 and
0 < k + 1− t < 1. Combining (3.11) with (3.12) yields the upper bound∫

Rd

(1 + ‖Tx‖)−N‖x‖t−d dx .N,d,t
1

φt(T )
.

Next we prove the lower bound. Let Ω denote the set of (x1, . . . , xd) ∈ Rd such
that

|xi| ≤
1

αi
for 1 ≤ i ≤ k,

1

αk+1

≤ |xk+1| ≤
2

αk+1

and

|xj| ≤
1

αk+1

for k + 2 ≤ j ≤ d.

Then for each (x1, . . . , xd) ∈ Ω, we have

d∑
i=1

|xi|d−t ≤ 2d−tdαt−dk+1 .d,t α
t−d
k+1

and |αixi| ≤ 2 for 1 ≤ i ≤ d which implies

1

1 +
∑d

i=1|αixi|N
≥ 1

1 + 2Nd
&N,d 1.

Hence by (3.9),∫
Rd

(1 + ‖Tx‖)−N‖x‖t−d dx &N,d,t
∫
· · ·
∫

Ω

dx1 · · · dxd(
1 +

∑d
i=1|αixi|N

)(∑d
j=1|xj|d−t

)
&N,d,t

∫
· · ·
∫

Ω

αd−tk+1 dx

= Ld(Ω)αd−tk+1

&d
1

α1 · · ·αkαd−kk+1α
t−d
k+1

=
1

φt(T )
.

This finishes the proof of the lower bound. �
10



4. The proofs of Theorem 1.1 and Corollary 1.2

We first introduce some notation. For n ∈ N write Σn = {1, . . . ,m}n. Set
Σ0 = {∅} where ∅ stands for the empty word. Write Σ∗ =

⋃∞
n=0 Σn. Set |I| = n

for every I ∈ Σn. For each t ≥ 0, we define gt : Σ∗ → (0,∞) by

(4.1) gt(I) = αd(TI)
t| det(TI)|,

where we take the convention that gt(∅) = 1.

Lemma 4.1. Let t ≥ 0. Then gt is supermultiplicative on Σ∗ in the sense that

(4.2) gt(IJ) ≥ gt(I)gt(J) for all I, J ∈ Σ∗.

Consequently,

(4.3) lim
n→∞

(∑
I∈Σn

gt(I)

)1/n

= sup
n∈N

(∑
I∈Σn

gt(I)

)1/n

.

Proof. Notice that for I, J ∈ Σ∗,

αd(TIJ) = ‖T−1
IJ ‖

−1 ≥ ‖T−1
I ‖

−1‖T−1
J ‖

−1 = αd(TI)αd(TJ).

It follows that

gt(IJ) = αd(TIJ)t|det(TIJ)| ≥ αd(TI)
tαd(TJ)t|det(TI)||det(TJ)| = gt(I)gt(J).

Hence (4.2) holds. Set an :=
∑

I∈Σn
gt(I) for n ∈ N. By (4.2), an+m ≥ anam for all

n,m ∈ N, from which (4.3) follows. �

The following result is an analogue of Lemma 4.2 in [5].

Lemma 4.2. Suppose t(T1, . . . , Tm) > 0. Then for every t with 0 < t < t(T1, . . . , Tm),
there exist a Borel probability measure µ on Σ, r ∈ (0, 1) and C > 0 such that

(4.4) µ([I]) ≤ Cgt(I)r|I| for all I ∈ Σ∗,

where [I] := {x = (xn)∞n=1 ∈ Σ : x1 · · ·xk = I} for I ∈ Σk.

Since gt is supermultiplicative, the proof of the above lemma is much more
straightforward than that of Lemma 4.2 in [5]. Actually we will prove a more
general result for supermultiplicative functions on Σ∗.

Lemma 4.3. Let f : Σ∗ → (0,+∞) be a function such that

(4.5) f(IJ) ≥ f(I)f(J) for all I, J ∈ Σ∗.

Suppose, in addition, that
∑

I∈ΣN
f(I) ≥ 1 for some N ∈ N. Then there exist a

Borel probability measure µ on Σ and C > 0 such that

(4.6) µ([I]) ≤ Cf(I) for all I ∈ Σ∗.
11



Proof. This is elementary and most likely known, but we have not been able to find
a reference so a proof is given for the readers convenience.

Write λ :=
∑

I∈ΣN
f(I) ≥ 1. Define a probability vector p = {pI}I∈ΣN

by

pI =
f(I)

λ
, I ∈ ΣN .

Let µ be the Bernoulli product measure on Σ = (ΣN)N associated with p. That is,

(4.7) µ([I1 . . . Ik]) =
k∏
`=1

pI`

for every k ∈ N and I1, . . . Ik ∈ ΣN .

Let I ∈ Σ∗. Then I can be written as I = I1 . . . IkW with I1, . . . , Ik ∈ ΣN and
1 ≤ |W | ≤ N . It may happen that k = 0 and in that case I1 . . . Ik should be viewed
as the empty word ∅. It follows from (4.5) that

(4.8)
f(I1 . . . Ik)

f(I)
=

f(I1 . . . Ik)

f(I1 . . . IkW )
≤ 1

f(W )
≤ C,

where C := max{1/f(J) : |J | ≤ N} <∞. By (4.7), (4.5) and (4.8),

µ([I]) ≤ µ([I1 . . . Ik]) =
k∏
`=1

f(I`)

λ
≤ λ−kf(I1 . . . Ik) ≤ f(I1 . . . Ik) ≤ Cf(I),

as desired. �

Proof of Lemma 4.2. Let 0 < t < t(T1, . . . , Tm). By the definition of t(T1, . . . , Tm),
there exists N ∈ N such that

∑
I∈ΣN

gt(I) > 1. Pick r ∈ (0, 1) such that∑
I∈ΣN

gt(I)rN > 1.

Define f : Σ∗ → (0,∞) by

f(I) = gt(I)r|I|

for each I ∈ Σ∗. By (4.2), f is supermultiplicative, so the desired conclusion follows
from Lemma 4.3. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix t so that d < t < t(T1, . . . , Tm). By Lemma 4.3, there
exist a Borel probability measure µ on Σ, r ∈ (0, 1) and C > 0 such that

(4.9) µ([I]) ≤ Cgt(I)r|I| for all I ∈ Σ∗.

Notice that µ([I])→ 0 as |I| → ∞. So µ has no atoms.

For brevity we write µa = µ ◦ (πa)−1 for a ∈ Rmd. Clearly, µa is supported on Ka

for each a. For ρ > 0, let B(0, ρ) denote the closed ball in Rmd of radius ρ centred
12



at the origin. We claim that for each ρ > 0,

(4.10)

∫
B(0,ρ)

∫
Rd

|µ̂a(ξ)|2‖ξ‖t dξ da <∞.

Clearly, (4.10) implies that for Lmd-a.e. a ∈ B(0, ρ),

∫
Rd

|µ̂a(ξ)|2‖ξ‖t dξ <∞;

so dimS µ
a ≥ t + d > 2d by Definition 2.1. By Lemma 2.2, Ka has non-empty

interior for Lmd-a.e. a ∈ B(0, ρ).

In what follows we prove (4.10). Fix ρ > 0. Take ψ ∈ C∞0 (Rmd) such that
0 ≤ ψ ≤ 1 and ψ(x) = 1 for all x ∈ B(0, ρ). Applying Fubini’s theorem,

(4.11)

∫
B(0,ρ)

∫
Rd

|µ̂a(ξ)|2‖ξ‖t dξ da

≤
∫
Rmd

∫
Rd

ψ(a)|µ̂a(ξ)|2‖ξ‖t da dξ

=

∫
Rmd

∫
Rd

ψ(a)‖ξ‖t
∫

Σ

∫
Σ

e−i〈ξ,π
a(x)−πa(y)〉 dµ(x)dµ(y) da dξ

=

∫
Σ

∫
Σ

∫
Rd

‖ξ‖t
∫
Rmd

ψ(a)e−i〈ξ,π
a(x)−πa(y)〉 da dξ dµ(x)dµ(y).

Take N > t+ d. By Proposition 3.3, there exists C̃ > 0 such that

(4.12)

∣∣∣∣∫
Rmd

ψ(a)e−i〈ξ,π
a(x)−πa(y)〉 da

∣∣∣∣ ≤ C̃(1 + ‖T ∗x∧yξ‖)−N

for all ξ ∈ Rd and x, y ∈ Σ with x 6= y. Since µ has no atoms, µ×µ is fully supported
on {(x, y) ∈ Σ× Σ : x 6= y}. To see this, simply notice that

µ× µ{(x, x) : x ∈ Σ} ≤
∑
I∈Σn

µ([I])2 ≤ sup
I∈Σn

µ([I])→ 0 as n→∞.

13



Hence, by (4.11) and (4.12),∫
B(0,ρ)

∫
Rd

|µ̂a(ξ)|2‖ξ‖t dξ da

≤ C̃

∫
Σ

∫
Σ

∫
Rd

(1 + ‖T ∗x∧yξ‖)−N‖ξ‖t dξ dµ(x)dµ(y)

≤ C ′
∫

Σ

∫
Σ

gt(x ∧ y)−1 dµ(x)dµ(y) (by Proposition 3.4)

≤ C ′
∞∑
n=0

∑
I∈Σn

gt(I)−1µ([I])2

≤ C ′′
∞∑
n=0

∑
I∈Σn

rnµ([I]) (by (4.9))

=
C ′′

1− r
<∞,

where C ′, C ′′ are two positive constants. This proves (4.10). �

Proof of Corollary 1.2. Clearly the condition
∑m

i=1 αd(Ti)
d| det(Ti)| > 1 implies that

t(T1, . . . , Tm) > d. Hence by Theorem 1.1, Ka has non-empty interior for Lmd-
a.e. a ∈ Rmd if condition (i) holds.

Notice that whenever Ti (i = 1, . . . ,m) are scalar multiples of orthogonal matrices,

m∑
i=1

αd(Ti)
d| det(Ti)| =

m∑
i=1

| det(Ti)|2.

Hence condition (ii) implies condition (i). �

5. The proof of Theorem 1.3

In this section we prove Theorem 1.3. For a = (a1, . . . , am) ∈ Rmd, let πa be the
coding map associated with the IFS {Tix + ai}mi=1; see (1.1). Let Σ∗ be defined as
in the beginning part of Section 4. Recall that for a Borel probability measure η on
Rd, its Hausdorff dimension dimH η is the smallest Hausdorff dimension of a Borel
set F of positive η measure. Part (ii) of the following result is needed in our proof.

Proposition 5.1. [11, Proposition 4.4] Assume that ‖Ti‖ < 1/2 for 1 ≤ i ≤ m .
Let µ be a Borel probability measure on Σ. Suppose that there exist s > 0 and C > 0
such that

µ([I]) ≤ Cφs(TI) for I ∈ Σ∗,

where φs is the singular value function defined as in (2.1). Then the following
properties hold:

(i) If 0 < s ≤ d, then dimH µ
a ≥ s for Lmd-a.e. a ∈ Rmd, where µa := µ◦(πa)−1.

(ii) If s > d, then µa � Ld for Lmd-a.e. a ∈ Rmd.
14



We remark that part (i) of the above proposition was also implicitly proved in [5].
In Section 6, we will provide an alternative proof of Proposition 5.1 by adapting the
proof of Theorem 1.1.

Proof of Theorem 1.3. The proof is based on Proposition 5.1, and will be conducted
as follows. For each a ∈ Rmd, we will construct two compact sets Ea, F a ⊂ Rd and
a vector va ∈ Rd such that

Ka ⊃ Ea + F a + va := {x+ y + va : x ∈ Ea, y ∈ F a}.
Then we will show that both Ea and F a have positive d-dimensional Lebesgue
measure for Lmd-a.e. a ∈ Rmd. Clearly by the Steinhaus theorem (see e.g. [18]), Ka

has nonempty interior for Lmd-a.e. a ∈ Rmd.

Before giving our constructions of Ea, F a and va for a ∈ Rmd, we first make some
preparation. Write

Tn := {TI : I ∈ Σn}, n ∈ N.
Since T1, . . . , Tm commute, each element in Tn is of the form T p11 · · ·T pmm , with
p1, . . . , pm being nonnegative integers so that p1 + · · ·+ pm = n. It follows that

(5.1) #Tn ≤ (n+ 1)m for every n ∈ N,

where # stands for cardinality.

Since
∑m

i=1|det(Ti)|2 > 1, by continuity we can choose t > 2 such that

λ :=
m∑
i=1

|det(Ti)|t > 1.

Then for n ∈ N,

(5.2)

λn =
∑
I∈Σn

|det(TI)|t =
∑
A∈Tn

∑
I∈Σn : TI=A

|det(TI)|t

=
∑
A∈Tn

#{I ∈ Σn : TI = A} · |det(A)|t.

Since λ > 1, we can choose a large positive integer N such that λN > (N + 1)m.
Then by (5.1),

λN > #TN .
Applying this to (5.2) (in which we take n = N) yields that there exists A ∈ TN
such that

#{I ∈ ΣN : TI = A} · |det(A)|t > 1.

Setting A = {I ∈ ΣN : TI = A}, we obtain

(5.3) (#A) · |detA|t > 1.

Let a = (a1, . . . , am) ∈ Rmd. For I = i1 . . . iN ∈ ΣN , define aI =
∑N−1

k=0 Ti1...ikaik+1
.

Then it is easily checked that

fa
I (x) := fa

i1
◦ · · · ◦ fa

iN
(x) = TIx+ aI , I ∈ ΣN .
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Hence by the definition of A, fa
I (x) = Ax + aI for each I ∈ A. It follows that

{Ax + aI}I∈A is a sub-family of the IFS {fa
I }I∈ΣN

. Therefore, letting Ga be the
attractor of {Ax+ aI}I∈A, we have

(5.4) Ka ⊃ Ga =

{
∞∑
k=0

AkaIk+1
: (Ik)

∞
k=1 ∈ AN

}
.

Fix an element J ∈ A. Notice that for each (Ik)
∞
k=1 ∈ AN,

(5.5)

∞∑
k=0

AkaIk+1
=
∞∑
k=0

(
A2kaI2k+1

+ A2k+1aI2k+2

)
=

(
∞∑
k=0

(
A2kaI2k+1

+ A2k+1aJ
))

+(
∞∑
k=0

(
A2k+1aI2k+2

+ A2kaJ
))
−
∞∑
k=0

AkaJ .

Define va = −
∑∞

k=0A
kaJ and

Ea =

{
∞∑
k=0

AkaIk+1
: I2n+1 ∈ A and I2n+2 = J for all n ≥ 0

}
,

F a =

{
∞∑
k=0

AkaIk+1
: I2n+1 = J and I2n+2 ∈ A for all n ≥ 0

}
.

By (5.4) and (5.5),

Ka ⊃ Ga = Ea + F a + va.

Next we show that for Lmd-a.e. a ∈ Rmd, Ld(Ea) > 0 and Ld(F a) > 0. Noticing
that F a = AEa+aJ withA being invertible, so we only need to show that Ld(Ea) > 0
for Lmd-a.e. a.

Define Λ = {IJ : I ∈ A}. Then Λ is a subset of Σ2N , so ΛN is a compact subset
of Σ since Σ = (Σ2N)N. By the definition of Ea, we see that Ea = πa(ΛN). Let µ
be the Bernoulli product measure on ΛN associated the uniform probability vector
(1/#A, . . . , 1/#A). That is,

(5.6) µ([ω1 · · ·ωn]) =

(
1

#A

)n
for all n ∈ N and ω1, . . . , ωn ∈ Λ.

Since ΛN is a compact subset of Σ, µ can be viewed as a Borel probability measure
on Σ. In particular, πa

∗µ = µ ◦ (πa)−1 is supported on Ea for each a ∈ Rmd.

Now we claim that there exists C > 0 such that

(5.7) µ([I]) ≤ Cφdt/2(TI) for all I ∈ Σ∗,

where φs denotes the singular value function defined as in (2.1). To prove the claim,
let I ∈ Σ∗. Then there is a unique integer k ≥ 0 such that 2kN ≤ |I| < 2(k + 1)N .

16



Write I = I1I2 with |I1| = 2kN . Clearly, µ([I]) ≤ µ([I1]). If I1 6∈ Λk, then
µ([I1]) = 0 since µ is supported on ΛN. Otherwise if I1 ∈ Λk, by (5.6) and (5.3),

(5.8) µ([I]) ≤ µ([I1]) =

(
1

#A

)k
< | det(A)|kt = | det(TI1)|t/2,

where in the last equality we have used the fact that I1 ∈ A2k which implies TI1 =
A2k. Since

| det(TI)| = | det(TI1) det(TI2)| ≥ | det(TI1)|
(

min
1≤i≤m

| det(Ti)|
)2N

,

it follows from (5.8) that

µ([I]) ≤ | det(TI1)|t/2 ≤ C| det(TI)|t/2 = Cφdt/2(TI),

where C := (min1≤i≤m | det(Ti)|)−tN , and in the last equality we have used that
t > 2. This completes the proof of (5.7).

Finally by (5.7) and Proposition 5.1(ii), µa � Ld for Lmd-a.e. a ∈ Rmd, where
µa := µ ◦ (πa)−1. Since µa is supported on Ea for each a, it follows that Ld(Ea) > 0
for Lmd-a.e. a ∈ Rmd. �

6. An alternative proof of Proposition 5.1

We remark that Proposition 5.1 can be alternatively proved by using the Fourier
transform, in a spirit similar to Solomyaks proof of absolute continuity for Bernoulli
convolutions (see [16]). Below we give a sketched proof.

Sketched proof of Proposition 5.1. We first prove (i). Take any t ∈ (0, s)\Z. Then
there exists r ∈ (0, 1) such that

(6.1) µ([I]) ≤ Cr|I|φt(TI) for I ∈ Σ∗.

Take N > t. For each ρ > 0, following the proof of Theorem 1.1 with minor changes,
we obtain∫

B(0,ρ)

∫
Rd

|µ̂a(ξ)|2‖ξ‖t−d dξ da

≤ C̃

∫
Σ

∫
Σ

∫
Rd

(1 + ‖T ∗x∧yξ‖)−N‖ξ‖t−d dξ dµ(x)dµ(y)

≤ C ′
∫

Σ

∫
Σ

(
φt(Tx∧y)

)−1
dµ(x)dµ(y) (by Proposition 3.5)

≤ C ′
∞∑
n=0

∑
I∈Σn

(
φt(TI)

)−1
µ([I])2

≤ C ′′
∞∑
n=0

∑
I∈Σn

rnµ([I]) =
C ′′

1− r
<∞, (by (6.1))

where C̃, C ′, C ′′ are positive constants. This implies that It(µa) < ∞ and hence
dimS µ

a ≥ t for almost all a. It is known that dimH η ≥ min{dimS η, d} for each
17



Borel probability measure η on Rd (see e.g. [14, p. 199]). Hence dimH µ
a ≥ t for

almost all a. Since t is arbitrarily taken from (0, s)\Z, we obtain dimH µ
a ≥ s for

almost all a.

To prove (ii), notice that there is r ∈ (0, 1) such that

(6.2) µ([I]) ≤ Cr|I|| det(TI)| = Cr|I|g0(TI) for I ∈ Σ∗,

where g0 is defined as in (4.1). Take N > d. For each ρ > 0, following the proof of
Theorem 1.1 (in which take t = 0) yields∫

B(0,ρ)

∫
Rd

|µ̂a(ξ)|2 dξ da

≤ C̃

∫
Σ

∫
Σ

∫
Rd

(1 + ‖T ∗x∧yξ‖)−N dξ dµ(x)dµ(y)

≤ C ′
∫

Σ

∫
Σ

g0(x ∧ y)−1 dµ(x)dµ(y) (by Proposition 3.4)

≤ C ′
∞∑
n=0

∑
I∈Σn

g0(I)−1µ([I])2

≤ C ′′
∞∑
n=0

∑
I∈Σn

rnµ([I]) =
C ′′

1− r
<∞. (by (6.2))

It implies that for Lmd-a.e. a ∈ Rmd, µ̂a ∈ L2(Rd) and thus µa is absolutely contin-
uous with an L2-density. �
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