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ThinA and ThinB are proved through a
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We remark the our kernels are inspired by
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computational scheme and pave the way for
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For simplicity and dearity we focus on the

proof of Thin A

Preparations
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By the above argument the problem reduces

to the study of the relationship between

SEE and CECE

The major tool is the potential theoretical version

of the classical mass distribution principle which

is implicitly contained in Falconer2021
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By a discretization at each Xe E we can

pick a ball cylinder with large density up

to a constant log la
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Replace each Tick with a collection

of sets of a common appropriate diameter
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